Skip to main content
Log in

A Multiobjective Approach for Nearest Neighbor Optimization of N-Dimensional Quantum Circuits

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The Nearest Neighbor (NN) restriction in quantum circuits requires quantum gates to act on geometrically adjacent qubits. Methods that convert generic quantum circuits and allow them to comply with the NN restriction have already been studied in the literature, where the main technique to accomplishing this task is by inserting SWAP gates into the circuit. In previous works, other authors have introduced a two-dimensional multi-objective NN conversion algorithm that takes into account two simultaneous objectives: the minimization of the two-dimensional grid size and the minimization of the number of SWAP gates required to allow any generic circuit to comply with the NN restriction. An extended higher-dimensional version of these previous methods is presented in this work, maintaining the same optimization objectives. We present experimental results for three-dimensional circuits, which show improvements for 52.6% of the tested circuits over all previously published results to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alfailakawi MG, Ahmad I, Hamdan S. Harmony-search algorithm for 2d nearest neighbor quantum circuits realization. Exp Syst Appl. 2016;61:16–27.

    Article  Google Scholar 

  2. Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H. Elementary gates for quantum computation. Phys Rev A. 1995;52(5):3457.

    Article  Google Scholar 

  3. Bhattacharjee A, Bandyopadhyay C, Wille R, Drechsler, R, Rahaman, H. A novel approach for nearest neighbor realization of 2d quantum circuits. In: 2018 IEEE computer society annual symposium on VLSI (ISVLSI). 2018; pp. 305–310. 10.1109/ISVLSI.2018.00063

  4. Chakrabarti A, Sur-Kolay S, Chaudhury A. Linear nearest neighbor synthesis of reversible circuits by graph partitioning. arXiv preprint arXiv:1112.0564. 2011

  5. Cheung D, Maslov D, Severini S. Translation techniques between quantum circuit architectures. In: Workshop on quantum information processing. 2007

  6. Córcoles AD, Magesan E, Srinivasan SJ, Cross AW, Steffen M, Gambetta JM, Chow JM. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat Commun. 2015;6:1–10.

    Article  Google Scholar 

  7. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evolut Comput. 2002;6(2):182–97.

    Article  Google Scholar 

  8. Farghadan A, Mohammadzadeh N. Quantum circuit physical design flow for 2d nearest-neighbor architectures. Int J Cir Theory Appl. 2017;45(7):989–1000.

    Article  Google Scholar 

  9. Grover LK. A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on theory of computing. 1996; pp. 212–219. ACM

  10. Häffner H, Hänsel W, Roos C, Benhelm J, Chwalla M, Körber T, Rapol U, Riebe M, Schmidt P, Becher C, et al. Scalable multiparticle entanglement of trapped ions. Nature. 2005;438(7068):643.

    Article  Google Scholar 

  11. Harrow AW, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations. Phys Rev Lett. 2009;103(15):150502.

    Article  MathSciNet  Google Scholar 

  12. Hattori W, Yamashita S. Quantum circuit optimization by changing the gate order for 2d nearest neighbor architectures. In: International conference on reversible computation. 2018; pp. 228–243. Springer

  13. Hirata Y, Nakanishi M, Yamashita S, Nakashima, Y. An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: Quantum, Nano and Micro Technologies, 2009. ICQNM’09. Third International Conference on. 2009; pp. 26–33. IEEE

  14. Hirata Y, Nakanishi M, Yamashita S, Nakashima Y. An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Inf Comput. 2011;11(1):142.

    MathSciNet  MATH  Google Scholar 

  15. Jones NC, Van Meter R, Fowler AG, McMahon PL, Kim J, Ladd TD, Yamamoto Y. Layered architecture for quantum computing. Phys Rev X. 2012;2(3):031007.

    Google Scholar 

  16. Kole A, Datta K, Sengupta I. A new heuristic for \(N\)-dimensional nearest neighbor realization of a quantum circuit. IEEE Trans Comput Aided Des Integ Circ Syst. 2018;37(1):182–92.

    Article  Google Scholar 

  17. Kumph M, Brownnutt M, Blatt R. Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J Phys. 2011;13(7):3043.

    Article  Google Scholar 

  18. Lin CC, Sur-Kolay S, Jha NK. Paqcs: physical design-aware fault-tolerant quantum circuit synthesis. IEEE Trans Very Large Scale Integ (VLSI) Syst. 2015;23(7):221–1234.

    Article  Google Scholar 

  19. Lye A, Wille R, Drechsler R. Determining the minimal number of swap gates for multi-dimensional nearest neighbor quantum circuits. In: Design automation conference (ASP-DAC), 2015 20th Asia and South Pacific. 2015; pp. 178–183. IEEE

  20. Marbaniang L, Datta K. Efficient design of quantum circuits using nearest neighbor constraint in 3d architecture. J Circ Syst Comput. 2019;28(05):1950084. https://doi.org/10.1142/S0218126619500841.

    Article  Google Scholar 

  21. Marbaniang L, Kole A, Datta K, Sengupta I. Design of efficient quantum circuits using nearest neighbor constraint in 2d architecture. In: International conference on reversible computation. 2017; pp. 248–253. Springer

  22. Maslov D, Dueck GW. Improved quantum cost for n-bit toffoli gates. Electr Lett. 2003;39(25):1790–1.

    Article  Google Scholar 

  23. Matsuo A, Yamashita S. Changing the gate order for optimal lnn conversion. In: International workshop on reversible computation. 2011; pp. 89–101. Springer

  24. Matsuo A, Yamashita S. An efficient method for quantum circuit placement problem on a 2-d grid. In: International conference on reversible computation. 2019; pp. 162–168. Springer

  25. Nielsen MA, Chuang IL. Quantum computation and quantum information (2000)

  26. Ohliger M, Eisert J. Efficient measurement-based quantum computing with continuous-variable systems. Phys Rev A. 2012; 85(6): 062318

  27. Okamoto T, Tanaka K, Uchiyama S. Quantum public-key cryptosystems. In: Annual international cryptology conference. 2000; p. 147–165. Springer

  28. Pérez-Delgado CA, Mosca M, Cappellaro P, Cory DG. Single spin measurement using cellular automata techniques. Phys Rev Lett. 2006;97(10):100–501.

    Article  Google Scholar 

  29. Petit J. Experiments on the minimum linear arrangement problem. J Exp Algorithm (JEA). 2003;8:2–3.

    MathSciNet  MATH  Google Scholar 

  30. Rahman M, Dueck GW, et al. Synthesis of linear nearest neighbor quantum circuits. arXiv preprint. 2015; arXiv:1508.05430

  31. Ruffinelli D, Barán B. Linear nearest neighbor optimization in quantum circuits: a multiobjective perspective. Quantum Inf Process. 2017;16(9):220.

    Article  MathSciNet  Google Scholar 

  32. Shafaei A, Saeedi M, Pedram M. Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: Proceedings of the 50th annual design automation conference. 2013; p. 41. ACM

  33. Shafaei A, Saeedi M, Pedram M. Qubit placement to minimize communication overhead in 2d quantum architectures. In: Design automation conference (ASP-DAC), 2014 19th Asia and South Pacific. 2014; pp. 495–500. IEEE

  34. Shrivastwa RR, Datta K, Sengupta I. Fast qubit placement in 2d architecture using nearest neighbor realization. In: Nanoelectronic and information systems (iNIS), 2015 IEEE international symposium on. 2015; pp. 95–100. IEEE

  35. Spedalieri FM, Roychowdhury VP. Latency in local, two-dimensional, fault-tolerant quantum computing. 2008; arXiv preprint arXiv:0805.4213

  36. Strauch FW, Johnson PR, Dragt AJ, Lobb C, Anderson J, Wellstood F. Quantum logic gates for coupled superconducting phase qubits. Phys Rev Lett. 2003;91(16):167005.

    Article  Google Scholar 

  37. von Lücken C, Barán B, Brizuela C. A survey on multi-objective evolutionary algorithms for many-objective problems. Comput Optim Appl. 2014;58(3):707–56.

    MathSciNet  MATH  Google Scholar 

  38. Wille R, Große D, Teuber L, Dueck GW, Drechsler R. Revlib: An online resource for reversible functions and reversible circuits. In: Multiple valued logic, 2008. ISMVL 2008. 38th international symposium on. 2008; pp. 220–225. IEEE

  39. Wille R, Saeedi M, Drechsler R. Synthesis of reversible functions beyond gate count and quantum cost. 2010; arXiv preprint arXiv:1004.4609

  40. Wille R, Lye A, Drechsler R. Optimal swap gate insertion for nearest neighbor quantum circuits. In: Design automation conference (ASP-DAC), 2014 19th Asia and South Pacific. 2014; pp. 489–494. IEEE

  41. Wille R, Keszocze O, Walter M, Rohrs P, Chattopadhyay A, Drechsler R. Look-ahead schemes for nearest neighbor optimization of 1d and 2d quantum circuits. In: Design automation conference (ASP-DAC), 2016 21st Asia and South Pacific. 2016; pp. 292–297. IEEE

  42. Wineland DJ, Barrett M, Britton J, Chiaverini J, DeMarco B, Itano WM, Jelenković B, Langer C, Leibfried D, Meyer V, et al. Quantum information processing with trapped ions. Philos Trans R Soc London A Math Phys Eng Sci. 2003;361(1808):1349–61.

    Article  Google Scholar 

  43. Zalka C. Grover’s quantum searching algorithm is optimal. Phys Rev A. 1999;60(4):2746.

    Article  Google Scholar 

  44. Zulehner A, Gasser S, Wille R. Exact global reordering for nearest neighbor quantum circuits using \(A^*\). In: International conference on reversible computation. 2017; pp. 185–201. Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Villagra.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Quantum Computing: Circuits Systems Automation and Applications” guest edited by Himanshu Thapliyal and Travis S. Humble.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barán, B., Carballude, A. & Villagra, M. A Multiobjective Approach for Nearest Neighbor Optimization of N-Dimensional Quantum Circuits. SN COMPUT. SCI. 2, 19 (2021). https://doi.org/10.1007/s42979-020-00398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00398-3

Keywords

Navigation