Skip to main content
Log in

Factors Affecting Sea-Level Performance Following Altitude Training in Elite Athletes

  • Review Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Live high train high (LHTH) is the original method of altitude training used by elite athletes to enhance sea-level performance. Whilst many anecdotal reports featuring world-class performances of elite athletes at sea-level following LHTH exist, well-controlled studies of elite athletes using altitude training under ecologically valid conditions with training well characterised are still lacking. The literature is equivocal when considering the ergogenic potential of LHTH, and given the majority of controlled studies do not report enhanced sea-level performance, some scepticism regarding the efficacy of LHTH persists. Despite this, LHTH remains a popular form of altitude training utilised by elite athletes, with numerous case studies of champion athletes employing LHTH solidifying the rationale for its use during preparation for competition. Discussion of factors affecting the response to LHTH are often related to compromising either the hypoxia induced acceleration of erythropoiesis and production of red blood cells, or the maintenance of oxygen flux and training intensity at altitude. Regarding the former, iron status and supplementation, as well as hypoxic dose are often mentioned. Concerning the latter, reduced oxygen availability at altitude leading to athletes training at lower absolute intensities and the relative intensity of training sessions being clamped as equivalent to sea-level, thus also reducing absolute training intensity are frequently discussed. Other factors including immune function and the timing of competition following LHTH may also contribute to an observed performance. Less considered in the literature are those factors specific to elite athletes, namely the repeated use of altitude camps throughout a season, and the influence this may have on subsequent performance. The current narrative review aimed to summarise the current literature pertaining to LHTH in elite athletes, and furthermore describe several factors affecting performance following altitude training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adams WC, Bernauer EM, Dill DB, Bomar JB. Effects of equivalent sea-level and altitude training on V̇O2 max and running performance. J Appl Physiol. 1975;39(2):262–6.

    CAS  PubMed  Google Scholar 

  2. Aubry A, Hausswirth C, Julien L, Coutts AJ, Le Meur Y. Functional overreaching: the key to peak performance during the taper? Med Sci Sports Exerc. 2014;46(9):1769–77.

    PubMed  Google Scholar 

  3. Bailey DM, Davies B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med. 1997;31(3):183–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bailey DM, Davies B, Romer L, Castell L, Newsholme E, Gandy G. Implications of moderate altitude training for sea-level endurance in elite distance runners. Eur J Appl Physiol. 1998;78(4):360–8.

    CAS  Google Scholar 

  5. Bärtsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports. 2008;18(s1):1–10.

    PubMed  Google Scholar 

  6. Baumann I, Bonov P, Daniels J, Lange G. Round table: high altitude training symposium. New Stud Athletics. 1994;9(2):23–35.

    Google Scholar 

  7. Beidleman BA, Muza SR, Rock PB, Fulco CS, Lyons TP, Hoyt RW, Cymerman A. Exercise responses after altitude acclimatization are retained during reintroduction to altitude. Med Sci Sports Exerc. 1997;29(12):1588–95.

    CAS  PubMed  Google Scholar 

  8. Bejder J, Andersen AB, Buchardt R, Larsson TH, Olsen NV, Nordsborg NB. Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric “Live High-Train Low”: a double-blind placebo-controlled cross-over study. Eur J Appl Physiol. 2017;117(5):979–88.

    PubMed  Google Scholar 

  9. Bellenou S, Quiclet JB, Millet GP. Reliability of altitude-induced performance changes in a top-2 Tour de France cyclist. J Sci Cycling. 2017;6(3):4–6.

    Google Scholar 

  10. Berglund B. High-altitude training. Sports Med. 1992;14(5):289–303.

    CAS  PubMed  Google Scholar 

  11. Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia. Sports Med. 2009;39(2):107–27.

    PubMed  Google Scholar 

  12. Bonne TC, Lundby C, Jørgensen S, Johansen L, Mrgan M, Bech SR, Sander M, Papoti M, Nordsborg NB. “Live high-train high” increases haemoglobin mass in Olympic swimmers. Eur J Appl Physiol. 2014;114(7):1439–49.

    PubMed  Google Scholar 

  13. Brocherie F, Schmitt L, Millet GP. Hypoxic dose, intensity distribution, and fatigue monitoring are paramount for “live high-train low” effectiveness. Eur J Appl Physiol. 2017;117(10):979–88.

    Google Scholar 

  14. Brosnan MJ, Martin DT, Hahn AG, Gore CJ, Hawley JA. Impaired interval exercise responses in elite female cyclists at moderate simulated altitude. J Appl Physiol. 2000;89(5):1819–24.

    CAS  PubMed  Google Scholar 

  15. Brugniaux JV, Schmitt L, Robach P, Nicolet G, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Saas P, Chorvot MC, Cornolo J. Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol. 2006;100(1):203–11.

    PubMed  Google Scholar 

  16. Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23(2):259–66.

    CAS  PubMed  Google Scholar 

  17. Chapman RF. The individual response to training and competition at altitude. Br J Sports Med. 2013;47(Suppl 1):i40–4.

    PubMed  Google Scholar 

  18. Chapman RF, Emery MI, Stager JM. Degree of arterial desaturation in normoxia influences VO2max decline in mild hypoxia. Med Sci Sports Exerc. 1999;31(5):658–63.

    CAS  PubMed  Google Scholar 

  19. Chapman RF, Karlsen T, Ge RL, Stray-Gundersen J, Levine BD. Living altitude influences endurance exercise performance change over time at altitude. J Appl Physiol. 2016;120(10):1151–8.

    PubMed  Google Scholar 

  20. Chapman RF, Karlsen T, Resaland GK, Ge RL, Harber MP, Witkowski S, Stray-Gundersen J, Levine BD. Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol. 2014;116(6):595–603.

    PubMed  Google Scholar 

  21. Chapman RF, Stager JM, Tanner DA, Stray-Gundersen J, Levine BD. Impairment of 3000-m run time at altitude is influenced by arterial oxyhemoglobin saturation. Med Sci Sports Exerc. 2011;43(9):1649–56.

    CAS  PubMed  Google Scholar 

  22. Chapman RF, Stickford ASL, Lundby C, Levine BD. Timing of return from altitude training for optimal sea-level performance. J Appl Physiol. 2014;116(7):837–43.

    PubMed  Google Scholar 

  23. Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol. 1998;85(4):1448–56.

    CAS  PubMed  Google Scholar 

  24. Constantini K, Wilhite DP, Chapman RF. A clinician guide to altitude training for optimal endurance exercise performance at sea level. High Alt Med Biol. 2017;18(2):93–101.

    PubMed  Google Scholar 

  25. d’Alessandro A, Nemkov T, Sun K, Liu H, Song A, Monte AA, Subudhi AW, Lovering AT, Dvorkin D, Julian CG, Kevil CG. AltitudeOmics: red blood cell metabolic adaptation to high altitude hypoxia. J Proteome Res. 2016;15(10):3883–95.

    PubMed  PubMed Central  Google Scholar 

  26. Daniels J, Oldridge N. The effects of alternate exposure to altitude and sea-level on world-class middle-distance runners. Med Sci Sports Exerc. 1970;2(3):107–12.

    CAS  Google Scholar 

  27. Deb SK, Brown DR, Gough LA, Mclellan CP, Swinton PA, Sparks SA, Mcnaughton LR. Quantifying the effects of acute hypoxic exposure on exercise performance and capacity: A systematic review and meta-regression. Eur J Sport Sci. 2018;18(2):243–56.

    PubMed  Google Scholar 

  28. Dick FW. Training at altitude in practice. Int J Sports Med. 1992;13(S1):S203–5.

    PubMed  Google Scholar 

  29. Dill DB, Adams WC. Maximal oxygen uptake at sea level and at 3090-m altitude in high school champion runners. J Appl Physiol. 1971;30(6):854–9.

    CAS  PubMed  Google Scholar 

  30. Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C. Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol. 1989;66(4):1785–8.

    CAS  PubMed  Google Scholar 

  31. Faiss R, Léger B, Vesin JM, Fournier PE, Eggel Y, Dériaz O, Millet GP. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE. 2013;8(2): e56522.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Faulkner JA, Daniels JT, Balke BR. Effects of training at moderate altitude on physical performance capacity. J Appl Physiol. 1967;23(1):85–9.

    CAS  PubMed  Google Scholar 

  33. Faulkner JA, Kollias JA, Favour CB, Buskirk ER, Balke B. Maximum aerobic capacity and running performance at altitude. J Appl Physiol. 1968;24(5):685–91.

    CAS  PubMed  Google Scholar 

  34. Frese F, Friedmann-Bette B. Effects of repetitive training at low altitude on erythropoiesis in 400 and 800 m runners. Int J Sports Med. 2010;31(6):382–8.

    CAS  PubMed  Google Scholar 

  35. Friedmann B, Bauer TI, Menold EL, Bärtsch P. Exercise with the intensity of the individual anaerobic threshold in acute hypoxia. Med Sci Sports Exerc. 2004;36(10):1737–42.

    PubMed  Google Scholar 

  36. Friedmann B, Frese F, Menold E, Kauper F, Jost J, Bärtsch P. Individual variation in the erythropoietic response to altitude training in elite junior swimmers. Br J Sports Med. 2005;39(3):148–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Friedmann-Bette B. Classical altitude training. Scand J Med Sci Sports. 2008;18(s1):11–20.

    PubMed  Google Scholar 

  38. Fulco CS, Beidleman BA, Muza SR. Effectiveness of pre-acclimatization strategies for high-altitude exposure. Exerc Sport Sci Rev. 2013;41(1):55–63.

    PubMed  Google Scholar 

  39. Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69(8):793–801.

    CAS  PubMed  Google Scholar 

  40. Fulco CS, Rock PB, Cymerman A. Improving athletic performance: is altitude residence or altitude training helpful? Aviat Space Environ Med. 2000;71(2):162–71.

    CAS  PubMed  Google Scholar 

  41. Garvican LA, Martin DT, Quod M, Stephens B, Sassi A, Gore CJ. Time course of the haemoglobin mass response to natural altitude training in elite endurance cyclists. Scand J Med Sci Sports. 2012;22(1):95–103.

    CAS  PubMed  Google Scholar 

  42. Garvican LA, Pottgiesser T, Martin DT, Schumacher YO, Barras M, Gore CJ. The contribution of haemoglobin mass to increases in cycling performance induced by simulated LHTL. Eur J Appl Physiol. 2011;111(6):1089–101.

    PubMed  Google Scholar 

  43. Garvican-Lewis LA, Halliday I, Abbiss CR, Saunders PU, Gore CJ. Altitude exposure at 1800 m increases haemoglobin mass in distance runners. J Sports Sci Med. 2015;14(2):413–7.

    PubMed  PubMed Central  Google Scholar 

  44. Garvican-Lewis LA, Sharpe K, Gore CJ. Time for a new metric for hypoxic dose? J Appl Physiol. 2016;121(1):352–5.

    PubMed  Google Scholar 

  45. Garvican-Lewis LA, Vuong VL, Govus AD, Peeling P, Jung G, Nemeth E, Hughes D, Lovell G, Eichner D, Gore CJ. Intravenous iron does not augment the haemoglobin mass response to simulated hypoxia. Med Sci Sports Exerc. 2018;50(8):1669–78. https://doi.org/10.1249/MSS.0000000000001608.

    Article  CAS  PubMed  Google Scholar 

  46. Gleeson M. Immune function in sport and exercise. J Appl Physiol. 2007;103(2):693–9.

    CAS  PubMed  Google Scholar 

  47. Gore CJ. The challenge of assessing athlete performance after altitude training. J Appl Physiol. 2014;116(6):593–4.

    PubMed  Google Scholar 

  48. Gore CJ, Clark SA, Saunders PU. Non-haematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc. 2007;39(9):1600–9.

    PubMed  Google Scholar 

  49. Gore CJ, Craig N, Hahn AG, Rice A, Bourdon P, Lawrence S, Walsh C, Stanef T, Barnes P, Parisotto R, Martin DT. Altitude training at 2690 m does not increase total haemoglobin mass or sea-level V̇O2 max in world champion track cyclists. J Sci Med Sport. 1998;1(3):156–70.

    CAS  PubMed  Google Scholar 

  50. Gore CJ, Hahn AG, Burge CM, Telford RD. V̇O2 max and haemoglobin mass of trained athletes during high intensity training. Int J Sports Med. 1997;28(6):477–82.

    Google Scholar 

  51. Gore CJ, Hahn AG, Scroop GC, Watson DB, Norton KI, Wood RJ, Campbell DP, Emonson DL. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol. 1996;80(6):2204–10.

    CAS  PubMed  Google Scholar 

  52. Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, Wachsmuth NB, Clark SA, McLean BD, Friedmann-Bette B, Neya M, Pottgiesser T, Schumacher YO, Schmidt WF. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47(Suppl 1):31–9.

    Google Scholar 

  53. Gough CE, Saunders PU, Fowlie J, Savage B, Pyne DB, Anson JM, Wachsmuth N, Prommer N, Gore CJ. Influence of altitude training modality on performance and total haemoglobin mass in elite swimmers. Eur J Appl Physiol. 2012;112(9):3275–85.

    CAS  PubMed  Google Scholar 

  54. Govus AD, Garvican-Lewis LA, Abbiss CR, Peeling P, Gore CJ. Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and haemoglobin mass responses to altitude exposure. PLoS ONE. 2015;10(8): e0135120.

    PubMed  PubMed Central  Google Scholar 

  55. Hahn AG, Gore CJ, Martin DT, Ashenden MJ, Roberts AD, Logan PA. An evaluation of the concept of living at moderate altitude and training at sea level. Comp Biochem Physiol Part A. 2001;128(4):777–89.

    CAS  Google Scholar 

  56. Hawley JA, Lundby C, Cotter JD, Burke LM. Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metab. 2018;27(5):962–76.

    CAS  PubMed  Google Scholar 

  57. Heinicke K, Heinicke I, Schmidt W, Wolfarth B. A three-week traditional altitude training increases haemoglobin mass and red cell volume in elite biathlon athletes. Int J Sports Med. 2005;26(5):350–5.

    CAS  PubMed  Google Scholar 

  58. Hopkins WG. Individual responses made easy. J Appl Physiol. 2015;118(12):1444–6.

    PubMed  Google Scholar 

  59. Hopkins WG, Hewson DJ. Variability of competitive performance of distance runners. Med Sci Sports Exerc. 2001;33(9):1588–92.

    CAS  PubMed  Google Scholar 

  60. Issurin VB. Altitude training: an up-to-date approach and implementation in practice. Sporto Mokslas. 2007;1(47):12–9.

    Google Scholar 

  61. Jensen K, Nielsen TS, Fiskestrand A, Lund JO, Christensen NJ, Sechef NH. High-altitude training does not increase maximal oxygen uptake or work capacity at sea-level in rowers. Scand J Med Sci Sports. 1993;3(4):256–62.

    Google Scholar 

  62. Karlsson Ø, Laaksonen MS, McGawley K. Monitoring acclimatization and training responses over 17–21 days at 1,800 m in elite cross-country skiers and biathletes. Front Sports Act Living. 2022;4: 852108. https://doi.org/10.3389/fspor.2022.852108.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Koivisto-Mørk AE, Svendsen IS, Skattebo Ø, Hallén J, Paulsen G. Impact of baseline serum ferritin and supplemental iron on altitude-induced hemoglobin mass response in elite athletes. Scand J Med Sci Sports. 2021;31(9):1764–73. https://doi.org/10.1111/sms.13982.

    Article  PubMed  Google Scholar 

  64. Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102–12.

    CAS  PubMed  Google Scholar 

  65. Levine BD, Stray-Gundersen J. Point: positive effects of intermittent hypoxia (live high: train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99(5):2053–5.

    PubMed  Google Scholar 

  66. Levine BD, Stray-Gundersen J. Dose-response of altitude training: how much altitude is enough? Adv Exp Med Biol. 2006;588:233–47.

    PubMed  Google Scholar 

  67. Lundby C, Calbet JA, Robach P. The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci. 2009;66(22):3615–23.

    CAS  PubMed  Google Scholar 

  68. Lundby C, Millet GP, Calbet JA, Bärtsch P, Subudhi AW. Does ‘altitude training’ increase exercise performance in elite athletes? Br J Sports Med. 2012;46(11):792–5.

    PubMed  Google Scholar 

  69. Lundby C, Robach P. Does ‘altitude training’ increase exercise performance in elite athletes? Exp Physiol. 2016;101(7):783–8.

    PubMed  Google Scholar 

  70. MacInnis MJ, Nugent SF, Macleod KE, Lohse KR. Methods to estimate VO2 max upon acute hypoxia exposure. Med Sci Sports Exerc. 2015;47(9):1869–76.

    CAS  PubMed  Google Scholar 

  71. Mazzeo RS. Altitude, exercise and immune function. Exerc Immunol Rev. 2005;11:6–16.

    PubMed  Google Scholar 

  72. Mazzeo RS. Physiological responses to exercise at altitude. Sports Med. 2008;38(1):1–8.

    PubMed  Google Scholar 

  73. McLean BD, Buttifant D, Gore CJ, White K, Kemp J. Year-to-year variability in haemoglobin mass response to two altitude training camps. Br J Sports Med. 2013;47(Suppl 1):i51–8.

    PubMed  Google Scholar 

  74. McLean BD, Buttifant D, Gore CJ, White K, Liess C, Kemp J. Physiological and performance responses to a pre-season altitude training camp in elite team sport athletes. Int J Sports Physiol Perform. 2013;8(4):391–9.

    PubMed  Google Scholar 

  75. Millet GP, Brocherie F, Girard O. Commentaries on viewpoint: time for a new metric for hypoxic dose? J Appl Physiol. 2016;121(1):356.

    PubMed  Google Scholar 

  76. Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.

    PubMed  Google Scholar 

  77. Mizuno MA, Juel CA, Bro-Rasmussen T, Mygind E, Schibye B, Rasmussen B, Saltin B. Limb skeletal muscle adaptation in athletes after training at altitude. J Appl Physiol. 1990;68(2):496–502.

    CAS  PubMed  Google Scholar 

  78. Mujika I. The alphabet of sport science research starts with Q. Int J Sports Physiol Perform. 2013;8(5):465–6.

    PubMed  Google Scholar 

  79. Mujika I, Sharma AP, Stellingwerff T. Contemporary periodization of altitude training for elite endurance athletes: a narrative review. Sports Med. 2019;49(11):1651–69.

    PubMed  Google Scholar 

  80. Niess AM, Fehrenbach EL, Strobel GÜ, Roecker K, Schneider EM, Buergler JU, Fuss S, Lehmann R, Northoff HI, Dickhuth HH. Evaluation of stress responses to interval training at low and moderate altitudes. Med Sci Sports Exerc. 2003;35(2):263–9.

    PubMed  Google Scholar 

  81. Nummela A, Eronen T, Koponen A, Tikkanen H, Peltonen JE. Variability in hemoglobin mass response to altitude training camps. Scand J Med Sci Sports. 2021;31(1):44–51. https://doi.org/10.1111/sms.13804.

    Article  PubMed  Google Scholar 

  82. Okazaki K, Stray-Gundersen J, Chapman RF, Levine BD. Iron insufficiency diminishes the erythropoietic response to moderate altitude exposure. J Appl Physiol. 2019;127(6):1569–78. https://doi.org/10.1152/japplphysiol.00115.2018.

    Article  CAS  PubMed  Google Scholar 

  83. Pedersen BK, Steensberg A. Exercise and hypoxia: effects on leukocytes and interleukin-6-shared mechanisms? Med Sci Sports Exerc. 2002;34(12):2004–13.

    CAS  PubMed  Google Scholar 

  84. Płoszczyca K, Langfort J, Czuba M. The effects of altitude training on erythropoietic response and haematological variables in adult athletes: a narrative review. Front Physiol. 2018;9:375.

    PubMed  PubMed Central  Google Scholar 

  85. Prommer N, Thoma S, Quecke L, Gutekunst T, Völzke C, Wachsmuth N, Niess AM, Schmidt W. Total hemoglobin mass and blood volume of elite Kenyan runners. Med Sci Sports Exerc. 2010;42(4):791–7.

    CAS  PubMed  Google Scholar 

  86. Pugliese L, Serpiello FR, Millet GP, La Torre A. Training diaries during altitude training camp in two Olympic champions: an observational case study. J Sports Sci Med. 2014;13(3):666–72.

    PubMed  PubMed Central  Google Scholar 

  87. Richalet JP, Larmignat P, Poitrine E, Letournel M, Canouï-Poitrine F. Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am J Respir Crit Care Med. 2012;185(2):192–8. https://doi.org/10.1164/rccm.201108-1396OC.

    Article  PubMed  Google Scholar 

  88. Robach P, Hansen J, Pichon A, MeinildLundby AK, Dandanell S, SlettaløkkenFalch G, Hammarström D, Pesta DH, Siebenmann C, Keiser S, Kérivel P. Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers. Scand J Med Sci Sports. 2018;28(6):1636–52.

    CAS  PubMed  Google Scholar 

  89. Roberts D, Smith DJ. Erythropoietin concentration and arterial haemoglobin saturation with supramaximal exercise. J Sports Sci. 1999;17(6):485–93.

    CAS  PubMed  Google Scholar 

  90. Robertson EY, Aughey RJ, Anson JM, Hopkins WG, Pyne DB. Effects of simulated and real altitude exposure in elite swimmers. J Strength Cond Res. 2010;24(2):487–93.

    PubMed  Google Scholar 

  91. Robertson EY, Saunders PU, Pyne DB, Aughey RJ, Anson JM, Gore CJ. Reproducibility of performance changes to simulated live high/train low altitude. Med Sci Sports Exerc. 2010;42(2):394–401.

    PubMed  Google Scholar 

  92. Rodríguez FA, Iglesias X, Feriche B, Calderón-Soto C, Chaverri D, Wachsmuth NB, Schmidt W, Levine BD. Altitude training in elite swimmers for sea-level performance (Altitude Project). Med Sci Sports Exerc. 2015;47(9):1965–78.

    PubMed  Google Scholar 

  93. Roels B, Hellard P, Schmitt L, Robach P, Richalet JP, Millet GP. Is it more effective for highly trained swimmers to live and train at 1200 m than at 1850 m in terms of performance and haematological benefits? Br J Sports Med. 2006;40(2): e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rusko H, Tikkanen H, Peltonen J. Altitude and endurance training. J Sports Sci. 2004;22(10):928–45.

    PubMed  Google Scholar 

  95. Saugy JJ, Schmitt L, Cejuela R, Faiss R, Hauser A, Wehrlin JP, Rudaz B, Delessert A, Robinson N, Millet GP. Comparison of “Live High-Train Low” in normobaric versus hypobaric hypoxia. PLoS ONE. 2014;9(12): e114418.

    PubMed  PubMed Central  Google Scholar 

  96. Saunders PU, Garvican-Lewis LA, Schmidt WF, Gore CJ. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. Br J Sports Med. 2013;47(Suppl 1):i26-30.

    PubMed  Google Scholar 

  97. Saunders PU, Pyne DB, Gore CJ. Endurance training at altitude. High Alt Med Biol. 2009;10(2):135–48.

    PubMed  Google Scholar 

  98. Saunders PU, Telford RD, Pyne D, Gore CJ, Hahn AG. Improved race performance in elite middle-distance runners after cumulative altitude exposure. Int J Sports Physiol Perform. 2009;4(1):134–8.

    PubMed  Google Scholar 

  99. Sharma AP, Saunders PU, Garvican-Lewis LA, Clark B, Gore CJ, Thompson KG, Periard JD. Normobaric hypoxia reduces VO2 at different intensities in highly trained runners. Med Sci Sports Exerc. 2019;51(1):174–82.

    PubMed  Google Scholar 

  100. Sharma AP, Saunders PU, Garvican-Lewis LA, Clark B, Stanley J, Robertson EY, Thompson KG. The effect of training at 2100-m altitude on running speed and session rating of perceived exertion at different intensities in elite middle-distance runners. Int J Sports Physiol Perform. 2017;12(s2):147–52.

    Google Scholar 

  101. Sharma AP, Saunders PU, Garvican-Lewis LA, Clark B, Welvaert M, Gore CJ, Thompson KG. Improved performance in national-level runners with increased training load at 1600 and 1800 m. Int J Sports Physiol Perform. 2019;14(3):286–95.

    PubMed  Google Scholar 

  102. Sharma AP, Saunders PU, Garvican-Lewis LA, Périard JD, Clark B, Gore CJ, Raysmith BP, Stanley J, Robertson EY, Thompson KG. Training quantification and periodization during live high train high at 2100 M in elite runners: an observational cohort case study. J Sports Sci Med. 2018;17(4):607–21.

    PubMed  PubMed Central  Google Scholar 

  103. Shephard RJ. Altitude training camps. Br J Sports Med. 1974;8(1):38–45. https://doi.org/10.1136/bjsm.8.1.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Siebenmann C, Robach P, Jacobs RA, Rasmussen P, Nordsborg N, Diaz V, Christ A, Olsen NV, Maggiorini M, Lundby C. “Live high–train low” using normobaric hypoxia: a double-blinded, placebo-controlled study. J Appl Physiol. 2011;112(1):106–17.

    PubMed  Google Scholar 

  105. Sinex JA, Chapman RF. Hypoxic training methods for improving endurance exercise performance. J Sport Health Sci. 2015;4(4):325–32.

    Google Scholar 

  106. Solli GS, Tønnessen E, Sandbakk Ø. The training characteristics of the world’s most successful female cross-country skier. Front Physiol. 2017;8:1069.

    PubMed  PubMed Central  Google Scholar 

  107. Song A, Zhang Y, Han L, Yegutkin GG, Liu H, Sun K, D’Alessandro A, Li J, Karmouty-Quintana H, Iriyama T, Weng T. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nat Commun. 2017;8:14108.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sperlich B, Achtzehn S, de Marées M, von Papen H, Mester J. Load management in elite German distance runners during 3-weeks of high-altitude training. Physiol Rep. 2016;4(12):e12845. https://doi.org/10.14814/phy2.12845.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stray-Gundersen J, Alexander C, Hochstein A, Levine BD. Failure of red cell volume to increase to altitude exposure in iron deficient runners. Med Sci Sports Exerc. 1992;24(5):S90.

    Google Scholar 

  110. Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol. 2001;91(3):1113–20.

    CAS  PubMed  Google Scholar 

  111. Subudhi AW, Bourdillon N, Bucher J, Davis C, Elliott JE, Eutermoster M, Evero O, Fan JL, Jameson-Van Houten S, Julian CG, Kark J. AltitudeOmics: the integrative physiology of human acclimatization to hypobaric hypoxia and its retention upon reascent. PLoS ONE. 2014;9(3): e92191.

    PubMed  PubMed Central  Google Scholar 

  112. Svedenhag J, Saltin B, Johansson C, Kaijser L. Aerobic and anaerobic exercise capacities of elite middle-distance runners after two weeks of training at moderate altitude. Scand J Med Sci Sports. 1991;1(4):205–14.

    Google Scholar 

  113. Tønnessen E, Sylta Ø, Haugen TA, Hem E, Svendsen IS, Seiler S. The road to gold: training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS ONE. 2014;9(7): e101796.

    PubMed  PubMed Central  Google Scholar 

  114. Townsend NE, Gore CJ, Ebert TR, Martin DT, Hahn AG, Chow CM. Ventilatory acclimatisation is beneficial for high-intensity exercise at altitude in elite cyclists. Eur J Sports Sci. 2016;16(8):895–902.

    Google Scholar 

  115. Turner G, Fudge BW, Pringle JSM, Maxwell NS, Richardson AJ. Altitude training in endurance running: perceptions of elite athletes and support staff. J Sports Sci. 2019;37(2):163–72. https://doi.org/10.1080/02640414.2018.1488383.

    Article  PubMed  Google Scholar 

  116. Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.

    CAS  PubMed  Google Scholar 

  117. Wachsmuth NB, Völzke C, Prommer N, Schmidt-Trucksäss A, Frese F, Spahl O, Eastwood A, Stray-Gundersen J, Schmidt W. The effects of classic altitude training on haemoglobin mass in swimmers. Eur J Appl Physiol. 2013;113(5):1199–211.

    CAS  PubMed  Google Scholar 

  118. Wehrlin JP, Hallén J. Linear decrease in V̇O2 max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006;96(4):404–12.

    PubMed  Google Scholar 

  119. Weyand PG, Lee CS, Martinez-Ruiz R, Bundle MW, Bellizzi MJ, Wright S. High-speed running performance is largely unaffected by hypoxic reductions in aerobic power. J Appl Physiol. 1999;86(6):2059–64.

    CAS  PubMed  Google Scholar 

  120. Wilber RL. Altitude training and athletic performance. Champaign: Human Kinetics; 2004. pp. 140–58.

    Google Scholar 

  121. Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic" dose" on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590–9.

    PubMed  Google Scholar 

  122. Wilhite DP, Mickleborough TD, Laymon AS, Chapman RF. Increases in V̇O2max with ‘“live high–train low”’ altitude training: role of ventilatory acclimatization. Eur J Appl Physiol. 2013;113(2):419–26.

    PubMed  Google Scholar 

  123. Wilkes D, Gledhill N, Smyth R. Effect of acute induced metabolic alkalosis on 800-m racing time. Med Sci Sports Exerc. 1982;15(4):277–80.

    Google Scholar 

  124. Yan B, Ge X, Yu J, Hu Y, Girard O. Hypoxic re-exposure retains hematological but not performance adaptations post-altitude training. Eur J Appl Physiol. 2021;121(4):1049–59. https://doi.org/10.1007/s00421-020-04589-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avish P. Sharma.

Ethics declarations

Conflict of interests

There are no conflict of interests to declare for this article.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.P. Factors Affecting Sea-Level Performance Following Altitude Training in Elite Athletes. J. of SCI. IN SPORT AND EXERCISE 4, 315–330 (2022). https://doi.org/10.1007/s42978-022-00198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-022-00198-6

Keywords

Navigation