Skip to main content
Log in

Passive Strategies for the Prevention of Muscle Wasting During Recovery from Sports Injuries

  • Review article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Background

Recovery from sport injuries commonly involves a muscle disuse situation (i.e., reduction in physical activity levels sometimes preceded by joint immobilization) with subsequent negative effects on muscle mass and function.

Purpose

To summarize the current body of knowledge on the effectiveness of different physical strategies that are currently available to mitigate the negative effects of muscle disuse during recovery from sports injury.

Methods

A narrative review was conducted to summarize the information available on neuromuscular electrical stimulation (NMES), blood flow restriction (BFR) and vibration intervention.

Results

The concomitant application of BFR and low-intensity exercise has shown promising results in the prevention of disuse-induced muscle atrophy. Some benefits might also be obtained with BFR alone (i.e., with no exercise), but evidence is still inconclusive. NMES, which can be applied both passively and synchronously with exercise, can also attenuate most of the negative changes associated with disuse periods. In turn, the mechanical stimulus elicited by vibration seems effective to reduce the loss of bone mineral density that accompanies muscle disuse and could also provide some benefits at the muscle tissue level.

Conclusions

Different physical strategies are available to attenuate disuse-induced negative consequences during recovery from injury. These interventions can be applied passively, which makes them feasible during the first stages of the recovery. However, it would be advisable to apply these strategies in conjunction with low-intensity voluntary exercise as soon as this is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abe T, Fujita S, Nakajima T, Sakamaki M, Ozaki H, Ogasawara R, Ishii N. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in Young Men. J Sports Sci Med. 2010;9(3):452–8.

    PubMed  PubMed Central  Google Scholar 

  2. Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol. 2006;1985(100):1460–6.

    Google Scholar 

  3. Abercromby AF, Amonette WE, Layne CS, McFarlin BK, Hinman MR, Paloski WH. Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc. 2007;39(9):1642–50.

    PubMed  Google Scholar 

  4. Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J. 2005;19(7):786–8.

    CAS  PubMed  Google Scholar 

  5. Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012;590(5):1049–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Beekley MD, Sato Y, Abe T. KAATSU-walk training increases serum bone-specific alkaline phosphatase in young men. Int J of KAATSU Train Res. 2005;1(2):77–81.

    Google Scholar 

  7. Belavý DL, Beller G, Armbrecht G, Perschel FH, Fitzner R, Bock O, Felsenberg D. Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos Int. 2011;22(5):1581–91.

    PubMed  Google Scholar 

  8. Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111(10):2399–407.

    PubMed  Google Scholar 

  9. Blickenstorfer A, Kleiser R, Keller T, Keisker B, Meyer M, Riener R, Kollias S. Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Hum Brain Mapp. 2009;30(3):963–75.

    PubMed  Google Scholar 

  10. Brooks NE, Myburgh KH. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol. 2014;5:99.

    PubMed  PubMed Central  Google Scholar 

  11. Caggiano E, Emrey T, Shirley S, Craik RL. Effects of electrical stimulation or voluntary contraction for strengthening the quadriceps femoris muscles in an aged male population. J Orthop Sports Phys Ther. 1994;20(1):22–8.

    CAS  PubMed  Google Scholar 

  12. Capelli C, Antonutto G, Kenfack MA, CauteroM Lador F, Moia C, Ferretti G. Factors determining the time course of VO2(max) decay during bedrest: implications for VO2(max) limitation. Eur J Appl Physiol. 2006;98(2):152–60.

    CAS  PubMed  Google Scholar 

  13. Cook SB, Brown KA, Deruisseau K, Kanaley JA, Ploutz-Snyder LL. Skeletal muscle adaptations following blood flow-restricted training during 30 days of muscular unloading. J Appl Physiol. 2010;1985(109):341–9.

    Google Scholar 

  14. Cumps E, Verhagen E, Annemans L, Meeusen R. Injury rate and socioeconomic costs resulting from sports injuries in Flanders: data derived from sports insurance statistics 2003. Br J Sports Med. 2008;42(9):767–72.

    CAS  PubMed  Google Scholar 

  15. Delitto A, McKowen JM, McCarthy JA, Shively RA, Rose SJ. Electrically elicited co-contraction of thigh musculature after anterior cruciate ligament surgery. A description and single-case experiment. Phys Ther. 1988;68(1):45–50.

    CAS  PubMed  Google Scholar 

  16. Dirks ML, Wall BT, Snijders T, Ottenbros CL, Verdijk LB, van Loon LJ. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol. 2014;210(3):628–41.

    CAS  Google Scholar 

  17. Dirks ML, Wall BT, van Loon LJC. Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. J Appl Physiol (1985). 2018;125(3):850–61.

    CAS  Google Scholar 

  18. Duvoisin MR, Convertino VA, Buchanan P, Gollnick PD, Dudley GA. Characteristics and preliminary observations of the influence of electromyostimulation on the size and function of human skeletal muscle during 30 days of simulated microgravity. Aviat Space Environ Med. 1989;60(7):671–8.

    CAS  PubMed  Google Scholar 

  19. Erickson ML, Ryan TE, Backus D, McCully KK. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle Nerve. 2016;55(5):669–75.

    Google Scholar 

  20. Eriksson E, Häggmark T. Comparison of isometric muscle training and electrical stimulation supplementing isometric muscle training in the recovery after major knee ligament surgery. A preliminary report. Am J Sports Med. 1979;7(3):169–71.

    CAS  PubMed  Google Scholar 

  21. Falempin M, In-Albon SF. Influence of brief daily tendon vibration on rat soleus muscle in non-weight-bearing situation. J Appl Physiol. 1999;1985(87):3–9.

    Google Scholar 

  22. Francis S, Lin X, Aboushoushah S, White TP, Phillips M, Bowtell R, Constantinescu CS. fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion. Neuroimage. 2009;44(2):469–79.

    PubMed  Google Scholar 

  23. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Rasmussen BB. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;1985(103):903–10.

    Google Scholar 

  24. Gibson JN, Smith K, Rennie MJ. Prevention of disuse muscle atrophy by means of electrical stimulation: maintenance of protein synthesis. Lancet. 1988;2(8614):767–70.

    CAS  PubMed  Google Scholar 

  25. Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports. 1975;7(3):185–98.

    CAS  PubMed  Google Scholar 

  26. Gondin J, Brocca L, Bellinzona E, D’Antona G, Maffiuletti NA, Miotti D, Bottinelli R. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol. 2011;1985(110):433–50.

    Google Scholar 

  27. Gondin J, Cozzone PJ, Bendahan D. Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes? Eur J Appl Physiol. 2011;111(10):2473–87.

    PubMed  Google Scholar 

  28. Gondin J, Guette M, Ballay Y, Martin A. Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc. 2005;37(8):1291–9.

    PubMed  Google Scholar 

  29. Grant JA. Updating recommendations for rehabilitation after ACL reconstruction: a review. Clin J Sport Med. 2013;23(6):501–2.

    PubMed  Google Scholar 

  30. Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Wojtys EM. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–50.

    CAS  PubMed  Google Scholar 

  31. Hartsell HD. Electrical muscle stimulation and isometric exercise effects on selected quadriceps parameters. J Orthop Sports Phys Ther. 1986;8(4):203–9.

    CAS  PubMed  Google Scholar 

  32. Hickey J, Shield AJ, Williams MD, Opar DA. The financial cost of hamstring strain injuries in the Australian Football League. Br J Sports Med. 2014;48(8):729–30.

    PubMed  Google Scholar 

  33. Holguin N, Muir J, Rubin C, Judex S. Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended bed rest. Spine J. 2009;9(6):470–7.

    PubMed  Google Scholar 

  34. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):1003–11.

    PubMed  Google Scholar 

  35. Inagaki Y, Madarame H, Neya M, Ishii N. Increase in serum growth hormone induced by electrical stimulation of muscle combined with blood flow restriction. Eur J Appl Physiol. 2011;111(11):2715–21.

    CAS  PubMed  Google Scholar 

  36. Iversen E, Vibeke R, Larmo A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci. 2016;5(1):115–8.

    PubMed  Google Scholar 

  37. Kaneguchi A, Ozawa J, Kawamata S, Kurose T, Yamaoka K. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle. BMC Musculoskelet Disord. 2014;15:315.

    PubMed  PubMed Central  Google Scholar 

  38. Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc. 2005;37(7):1144–50.

    PubMed  Google Scholar 

  39. Krol P, Piecha M, Slomka K, Sobota G, Polak A, Juras G. The effect of whole-body vibration frequency and amplitude on the myoelectric activity of vastus medialis and vastus lateralis. J Sports Sci Med. 2011;10(1):169–74.

    PubMed  PubMed Central  Google Scholar 

  40. Kubota A, Sakuraba K, Koh S, Ogura Y, Tamura Y. Blood flow restriction by low compressive force prevents disuse muscular weakness. J Sci Med Sport. 2011;14(2):95–9.

    PubMed  Google Scholar 

  41. Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc. 2008;40(2):529–34.

    PubMed  Google Scholar 

  42. Ladlow P, Coppack RJ, Dharm-Datta S, Conway D, Sellon E, Patterson SD, Bennett AN. Low-load resistance training with blood flow restriction improves clinical outcomes in musculoskeletal rehabilitation: a single-blind randomized controlled trial. Front Physiol. 2018;9:1269.

    PubMed  PubMed Central  Google Scholar 

  43. Lapole T, Pérot C. Effects of repeated Achilles tendon vibration on triceps surae force production. J Electromyogr Kinesiol. 2010;20(4):648–54.

    PubMed  Google Scholar 

  44. Lee SY, Im SH, Kim BR, Choi JH, Lee SJ, Han EY. The effects of neuromuscular electrical stimulation on cardiopulmonary function in healthy adults. Ann Rehabil Med. 2012;36(6):849–56.

    PubMed  PubMed Central  Google Scholar 

  45. Loenneke JP, Abe T, Wilson JM, Thiebaud RS, Fahs CA, Rossow LM, Bemben MG. Blood flow restriction: an evidence based progressive model (review). Acta Physiol Hung. 2012;99(3):235–50.

    CAS  PubMed  Google Scholar 

  46. Loenneke JP, Fahs CA, Thiebaud RS, Rossow LM, Abe T, Ye X, Bemben MG. The acute muscle swelling effects of blood flow restriction. Acta Physiol Hung. 2012;99(4):400–10.

    PubMed  Google Scholar 

  47. Loenneke JP, Wilson JM, Marín PJ, Zourdos MC, Bemben MG. Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol. 2012;112(5):1849–59.

    PubMed  Google Scholar 

  48. Maffiuletti NA, Gondin J, Place N, Stevens-Lapsley J, Vivodtzev I, Minetto MA. Clinical use of neuromuscular electrical stimulation for neuromuscular rehabilitation: what are we overlooking? Arch Phys Med Rehabil. 2017;99(4):806–12.

    PubMed  Google Scholar 

  49. Maffiuletti NA, Minetto MA, Farina D, Bottinelli R. Electrical stimulation for neuromuscular testing and training: state-of-the art and unresolved issues. Eur J Appl Physiol. 2011;111(10):2391–7.

    PubMed  Google Scholar 

  50. Magne H, Savary-Auzeloux I, Rémond D, Dardevet D. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr Res Rev. 2013;26(2):149–65.

    CAS  PubMed  Google Scholar 

  51. Miokovic T, Armbrecht G, Gast U, Rawer R, Roth HJ, Runge M, Belavý DL. Muscle atrophy, pain, and damage in bed rest reduced by resistive (vibration) exercise. Med Sci Sports Exerc. 2014;46(8):1506–16.

    PubMed  Google Scholar 

  52. Myklebust G, Bahr R. Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med. 2005;39(3):127–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nordlund MM, Thorstensson A. Strength training effects of whole-body vibration? Scand J Med Sci Sports. 2007;17(1):12–7.

    CAS  PubMed  Google Scholar 

  54. Nyakayiru J, Fuchs CJ, Trommelen J, Smeets JSJ, Senden JM, Gijsen AP, Verdijk LB. Blood flow restriction only increases myofibrillar protein synthesis with exercise. Med Sci Sports Exerc. 2019;51(6):1137–45

    Article  CAS  PubMed  Google Scholar 

  55. Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand. 2003;74(1):62–8.

    PubMed  Google Scholar 

  56. Paillard T, Noé F, Passelergue P, Dupui P. Electrical stimulation superimposed onto voluntary muscular contraction. Sports Med. 2005;35(11):951–66.

    PubMed  Google Scholar 

  57. Pellegrino MA, Desaphy JF, Brocca L, Pierno S, Camerino DC, Bottinelli R. Redox homeostasis, oxidative stress and disuse muscle atrophy. J Physiol. 2011;589(Pt 9):2147–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Phillips SM, McGlory C. CrossTalk proposal: the dominant mechanism causing disuse muscle atrophy is decreased protein synthesis. J Physiol. 2014;592(Pt 24):5341–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pietrangelo T, Mancinelli R, Toniolo L, Cancellara L, Paoli A, Puglielli C, Reggiani C. Effects of local vibrations on skeletal muscle trophism in elderly people: mechanical, cellular, and molecular events. Int J Mol Med. 2009;24(4):503–12.

    CAS  PubMed  Google Scholar 

  60. Pope ZK, Willardson JM, Schoenfeld BJ. Exercise and blood flow restriction. J Strength Cond Res. 2013;27(10):2914–26.

    PubMed  Google Scholar 

  61. Rechel JA, Yard EE, Comstock RD. An epidemiologic comparison of high school sports injuries sustained in practice and competition. J Athl Train. 2008;43(2):197–204.

    PubMed  PubMed Central  Google Scholar 

  62. Requena Sánchez B, Padial Puche P, González-Badillo JJ. Percutaneous electrical stimulation in strength training: an update. J Strength Cond Res. 2005;19(2):438–48.

    PubMed  Google Scholar 

  63. Rittweger J. Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol. 2010;108(5):877–904.

    PubMed  Google Scholar 

  64. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature. 2001;412(6847):603–4.

    CAS  PubMed  Google Scholar 

  65. Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ. Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown, and insulin resistance-A qualitative review. Front Physiol. 2016;7:361.

    PubMed  PubMed Central  Google Scholar 

  66. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94.

    PubMed  Google Scholar 

  67. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 2015;45(3):313–25.

    PubMed  Google Scholar 

  68. Senf SM. Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol. 2013;4:330.

    PubMed  PubMed Central  Google Scholar 

  69. Shackelford LC, LeBlanc AD, Driscoll TB, Evans HJ, Rianon NJ, Smith SM, Lai D. Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol. 2004;1985(97):119–29.

    Google Scholar 

  70. Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: a systematic review and meta-analysis. J Sci Med Sport. 2016;19(8):669–75.

    PubMed  Google Scholar 

  71. Snyder-Mackler L, Ladin Z, Schepsis AA, Young JC. Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. Effects of electrically elicited contraction of the quadriceps femoris and hamstring muscles on gait and on strength of the thigh muscles. J Bone Jt Surg Am. 1991;73(7):1025–36.

    CAS  Google Scholar 

  72. Souron R, Farabet A, Féasson L, Belli A, Millet GY, Lapole T. Eight weeks of local vibration training increases dorsiflexor muscle cortical voluntary activation. J Appl Physiol. 2017;1985(122):1504–15.

    Google Scholar 

  73. Souron R, Oriol M, Millet GY, Lapole T. Intermediate muscle length and tendon vibration optimize corticospinal excitability during knee extensors local vibration. Front Physiol. 2018;9:1266.

    PubMed  PubMed Central  Google Scholar 

  74. Sun KT, Leung KS, Siu PM, Qin L, Cheung WH. Differential effects of low-magnitude high-frequency vibration on reloading hind-limb soleus and gastrocnemius medialis muscles in 28-day tail-suspended rats. J Musculoskelet Neuronal Interact. 2015;15(4):316–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Nakajima T. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol. 2005;95(1):65–73.

    CAS  PubMed  Google Scholar 

  76. Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035–9.

    CAS  PubMed  Google Scholar 

  77. Tankisheva E, Bogaerts A, Boonen S, Delecluse C, Jansen P, Verschueren SM. Effects of a 6-month local vibration training on bone density, muscle strength, muscle mass, and physical performance in postmenopausal women. J Strength Cond Res. 2015;29(9):2613–22.

    PubMed  Google Scholar 

  78. Taradaj J, Halski T, Kucharzewski M, Walewicz K, Smykla A, Ozon M, Pasternok M. The effect of neuromuscular electrical stimulation on quadriceps strength and knee function in professional soccer players: return to sport after ACL reconstruction. Biomed Res Int. 2013;2013:802534.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tipton KD. Nutritional support for exercise-induced injuries. Sports Med. 2015;45:S93–104.

    PubMed  Google Scholar 

  80. Vaquero AF, Chicharro JL, Gil L, Ruiz MP, Sánchez V, Lucía A, Gómez MA. Effects of muscle electrical stimulation on peak VO2 in cardiac transplant patients. Int J Sports Med. 1998;19(5):317–22.

    CAS  PubMed  Google Scholar 

  81. Veldman MP, Gondin J, Place N, Maffiuletti NA. Effects of neuromuscular electrical stimulation training on endurance performance. Front Physiol. 2016;7:544.

    PubMed  PubMed Central  Google Scholar 

  82. Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol. 2019;1985(126):30–43.

    Google Scholar 

  83. Wall BT, Dirks ML, Snijders T, Senden JM, Dolmans J, van Loon LJ. Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol. 2014;210(3):600–11.

    CAS  Google Scholar 

  84. Wall BT, Morton JP, van Loon LJ. Strategies to maintain skeletal muscle mass in the injured athlete: nutritional considerations and exercise mimetics. Eur J Sport Sci. 2015;15(1):53–62.

    PubMed  Google Scholar 

  85. Wall BT, van Loon LJ. Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev. 2013;71(4):195–208.

    PubMed  Google Scholar 

  86. Wernbom M, Apro W, Paulsen G, Nilsen TS, Blomstrand E, Raastad T. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol. 2013;113(12):2953–65.

    CAS  PubMed  Google Scholar 

  87. Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res. 2013;27(11):3068–75.

    PubMed  Google Scholar 

  88. Zange J, Mester J, Heer M, Kluge G, Liphardt AM. 20-Hz whole body vibration training fails to counteract the decrease in leg muscle volume caused by 14 days of 6 degrees head down tilt bed rest. Eur J Appl Physiol. 2009;105(2):271–7.

    PubMed  Google Scholar 

Download references

Funding

This work is supported by the University of Alcalá (contract number FPI2016 to Valenzuela); the Spanish Ministry of Education, Culture and Sport (contract number FPU14/03435 to Morales); and the Spanish Ministry of Economy and Competitiveness (Fondo de Investigaciones Sanitarias and Fondos FEDER, grant numbers PI15/00558 and PI18/00139 to Lucia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro L. Valenzuela.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, P.L., Morales, J.S. & Lucia, A. Passive Strategies for the Prevention of Muscle Wasting During Recovery from Sports Injuries. J. of SCI. IN SPORT AND EXERCISE 1, 13–19 (2019). https://doi.org/10.1007/s42978-019-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-0008-5

Keywords

Navigation