Skip to main content
Log in

Effects of Foot Rotation on ACL Injury Risk Variables During Drop Landing

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

Landing is considered a “high-risk” movement for anterior cruciate ligament (ACL) injuries. Foot progression angle (FPA) during landing has been shown to influence hip, knee, and ankle mechanics. The purpose of this study was to compare five FPA conditions during drop landings between males and females.

Methods

Twenty males and females were tested using five FPA conditions: self-selected, toe-in 15°, toe-in 30°, toe-out 15°, and toe-out 30°. Right hip, knee, and ankle joint kinematics and kinetics were collected using a 12-camera motion capture system and two force plates. Five successful trials were collected and compared between FPA conditions.

Results

The main effect for FPA condition was statistically different for initial contact hip flexion, hip abduction, hip internal rotation, knee flexion, knee abduction, knee external rotation, and ankle inversion angles compared to self-selected FPA at P < 0.05. Peak hip extension, hip abduction, knee adduction, knee internal rotation, ankle plantar flexion, and ankle inversion moments were also found to be statistically significant (P < 0.05). Overall, females experienced greater initial knee abduction angle (P = 0.028), hip abduction moment (P = 0.006), knee extension moment (P = 0.033), and knee internal rotation moment (P = 0.044), regardless of FPA condition. Males experienced greater initial contact hip abduction angle (P = 0.0017), regardless of FPA condition.

Conclusion

The results suggest that landing with large toe-in FPA will increase the magnitude of ACL injury risk variables, and females demonstrated a greater magnitude in these variables compared to males. Injury prevention programs may seek to target FPA as part of training activities to avoid large FPA toe-in landings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ali N, Rouhi G. Barriers to predicting the mechanisms and risk factors of non-contact anterior cruciate ligament injury. Open Biomed Eng J. 2010;4:178–89. https://doi.org/10.2174/1874120701004010178.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bennett HJ, Shen G, Weinhandl JT, Zhang S. Validation of the greater trochanter method with radiographic measurements of frontal plane hip joint centers and knee mechanical axis angles and two other hip joint center methods. J Biomech. 2016;49(13):3047–51. https://doi.org/10.1016/j.jbiomech.2016.06.013.

    Article  PubMed  Google Scholar 

  3. Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. Phys Ther. 1999;79(4):371–83. https://doi.org/10.1093/ptj/79.4.371.

    Article  CAS  PubMed  Google Scholar 

  4. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–8.

    Article  CAS  Google Scholar 

  5. Cortes N, Onate J, Abrantes J, Gagen L, Dowling E, Van Lunen B. Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landings. J Appl Biomech. 2007;23(4):289–99. https://doi.org/10.1123/jab.23.4.289.

    Article  PubMed  Google Scholar 

  6. Dai B, Heinbaugh EM, Ning X, Zhu Q. A resistance band increased internal hip abduction moments and gluteus medius activation during pre-landing and early-landing. J Biomech. 2014;47(15):3674–80. https://doi.org/10.1016/j.jbiomech.2014.09.032.

    Article  PubMed  Google Scholar 

  7. Dempster WT, Gabel WC, Felts WJ. The anthropometry of the manual work space for the seated subject. Am J Phys Anthropol. 1959;17:289–317.

    Article  CAS  Google Scholar 

  8. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.

    Article  Google Scholar 

  9. Ficek K, Cieszczyk P, Kaczmarczyk M, Maciejewska-Karlowska A, Sawczuk M, Cholewinski J, Leonska-Duniec A, Stepien-Slodkowska M, Zarebska A, Stepto NK, Bishop DJ, Eynon N. Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J Sci Med Sport. 2013;16(5):396–400. https://doi.org/10.1016/j.jsams.2012.10.004.

    Article  PubMed  Google Scholar 

  10. Fung DT, Hendrix RW, Koh JL, Zhang LQ. ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res. 2007;460:210–8. https://doi.org/10.1097/BLO.0b013e31804d2339.

    Article  PubMed  Google Scholar 

  11. Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105(2):136–44. https://doi.org/10.1115/1.3138397.

    Article  CAS  PubMed  Google Scholar 

  12. Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(3):299–311. https://doi.org/10.1177/0363546505284183.

    Article  PubMed  Google Scholar 

  13. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. https://doi.org/10.1177/0363546504269591.

    Article  Google Scholar 

  14. Ishida T, Yamanaka M, Takeda N, Aoki Y. Knee rotation associated with dynamic knee valgus and toe direction. Knee. 2014;21(2):563–6. https://doi.org/10.1016/j.knee.2012.12.002.

    Article  PubMed  Google Scholar 

  15. Ishida T, Yamanaka M, Takeda N, Homan K, Koshino Y, Kobayashi T, Matsumoto H, Aoki Y. The effect of changing toe direction on knee kinematics during drop vertical jump: a possible risk factor for anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):1004–9. https://doi.org/10.1007/s00167-013-2815-2.

    Article  PubMed  Google Scholar 

  16. Kiapour AM, Demetropoulos CK, Kiapour A, Quatman CE, Wordeman SC, Goel VK, Hewett TE. Strain response of the anterior cruciate ligament to uniplanar and multiplanar loads during simulated landings: implications for injury mechanism. Am J Sports Med. 2016;44(6):2087–96. https://doi.org/10.1177/0363546516640499.

    Article  PubMed  Google Scholar 

  17. Koshino Y, Ishida T, Yamanaka M, Samukawa M, Kobayashi T, Tohyama H. Toe-in landing increases the ankle inversion angle and moment during single-leg landing: implications in the prevention of lateral ankle sprains. J Sport Rehabil. 2017;26(6):530–5. https://doi.org/10.1123/jsr.2016-0004.

    Article  PubMed  Google Scholar 

  18. Kristianslund E, Krosshaug T, Mok KM, McLean S, van den Bogert AJ. Expressing the joint moments of drop jumps and sidestep cutting in different reference frames—does it matter? J Biomech. 2014;47(1):193–9. https://doi.org/10.1016/j.jbiomech.2013.09.016.

    Article  PubMed  Google Scholar 

  19. Kristianslund E, Krosshaug T, van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666–71. https://doi.org/10.1016/j.jbiomech.2011.12.011.

    Article  PubMed  Google Scholar 

  20. Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359–67. https://doi.org/10.1177/0363546506293899.

    Article  PubMed  Google Scholar 

  21. Leppänen M, Pasanen K, Krosshaug T, Kannus P, Vasankari T, Kujala UM, Bahr R, Perttunen J, Parkkari J. Sagittal plane hip, knee, and ankle biomechanics and the risk of anterior cruciate ligament injury: a prospective study. Orthop J Sports Med. 2017;5(12):2325967117745487. https://doi.org/10.1177/2325967117745487.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leppänen M, Pasanen K, Krosshaug T, Kannus P, Vasankari T, Parkkari J. Landing with less hip flexion is associated with increased risk of ACL injuries in young female team sports players. Br J Sports Med. 2017;51(4):350–1. https://doi.org/10.1136/bjsports-2016-097372.169.

    Article  Google Scholar 

  23. Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, Demetropoulos CK. Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med. 2013;41(2):385–95. https://doi.org/10.1177/0363546512465167.

    Article  PubMed  Google Scholar 

  24. McPherson AL, Dowling B, Tubbs TG, Paci JM. Sagittal plane kinematic differences between dominant and non-dominant legs in unilateral and bilateral jump landings. Phys Ther Sport. 2016;22:54–60. https://doi.org/10.1016/j.ptsp.2016.04.001.

    Article  PubMed  Google Scholar 

  25. Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):1002–12. https://doi.org/10.1177/0363546503261724.

    Article  PubMed  Google Scholar 

  26. Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE Jr, Beutler AI. The landing error scoring system (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med. 2009;37(10):1996–2002. https://doi.org/10.1177/0363546509343200.

    Article  PubMed  Google Scholar 

  27. Pappas E, Hagins M, Sheikhzadeh A, Nordin M, Rose D. Biomechanical differences between unilateral and bilateral landings from a jump: gender differences. Clin J Sport Med. 2007;17(4):263–8. https://doi.org/10.1097/JSM.0b013e31811f415b.

    Article  PubMed  Google Scholar 

  28. Quisquater L, Bollars P, Vanlommel L, Claes S, Corten K, Bellemans J. The incidence of knee and anterior cruciate ligament injuries over one decade in the Belgian soccer league. Acta Orthop Belg. 2013;79(5):541–6.

    PubMed  Google Scholar 

  29. Roos H, Ornell M, Gardsell P, Lohmander LS, Lindstrand A. Soccer after anterior cruciate ligament injury—an incompatible combination? A national survey of incidence and risk factors and a 7-year follow-up of 310 players. Acta Orthop Scand. 1995;66(2):107–12. https://doi.org/10.3109/17453679508995501.

    Article  CAS  PubMed  Google Scholar 

  30. Senisik S, Ozgurbuz C, Ergun M, Yuksel O, Taskiran E, Islegen C, Ertat A. Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players. J Sports Sci Med. 2011;10(4):763–7.

    PubMed  PubMed Central  Google Scholar 

  31. Shin CS, Chaudhari AM, Andriacchi TP. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med Sci Sports Exerc. 2011;43(8):1484–91. https://doi.org/10.1249/MSS.0b013e31820f8395.

    Article  PubMed  Google Scholar 

  32. Taylor JB, Ford KR, Nguyen AD, Shultz SJ. Biomechanical comparison of single- and double-leg jump landings in the sagittal and frontal plane. Orthop J Sports Med. 2016;4(6). https://doi.org/10.1177/2325967116655158.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Teng PSP, Kong PW, Leong KF. Effects of foot rotation positions on knee valgus during single-leg drop landing: implications for ACL injury risk reduction. Knee. 2017;24(3):547–54. https://doi.org/10.1016/j.knee.2017.01.014.

    Article  CAS  PubMed  Google Scholar 

  34. Tran AA, Gatewood C, Harris AH, Thompson JA, Dragoo JL. The effect of foot landing position on biomechanical risk factors associated with anterior cruciate ligament injury. J Exp Orthop. 2016;3(1):13. https://doi.org/10.1186/s40634-016-0049-1.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weinhandl JT, Joshi M, O’Connor KM. Gender comparisons between unilateral and bilateral landings. J Appl Biomech. 2010;26(4):444–53.

    Article  Google Scholar 

  36. Weinhandl JT, O’Connor KM. Assessment of a greater trochanter-based method of locating the hip joint center. J Biomech. 2010;43(13):2633–6. https://doi.org/10.1016/j.jbiomech.2010.05.023.

    Article  PubMed  Google Scholar 

  37. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D'Lima DD, Cristofolini L, Wittle H, Schmid O, Stokes I. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35(4):543–8. https://doi.org/10.1016/s0021-9290(01)00222-6.

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua T. Weinhandl.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peel, S.A., Thorsen, T.A., Schneider, L.G. et al. Effects of Foot Rotation on ACL Injury Risk Variables During Drop Landing. J. of SCI. IN SPORT AND EXERCISE 2, 59–68 (2020). https://doi.org/10.1007/s42978-019-00051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-00051-3

Keywords

Navigation