Skip to main content
Log in

Caffeine Increases Rate of Torque Development Without Affecting Maximal Torque

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to examine the effects of caffeine on peak torque (PT), rate of torque development (RTD), and muscle activation in college-age men.

Methods

Fifteen men (23.3 ± 2.2 years, 177.6 ± 8.7 cm, 90.3 ± 19.1 kg) volunteered to participate in this study. During each of two test sessions, maximal leg extension PT and RTD were determined and electromyographic (EMG) and mechanomyographic (MMG) signals were collected to examine electrical and mechanical aspects of muscle activation, respectively. Participants also performed the Wingate Anaerobic Test (WAnT) for the determination of peak power (PP), mean power (MP), and fatigue percentage (FP). For the first test session, participants were randomly assigned to ingest either a caffeinated drink (6 mg/kg) or a placebo 1 h prior to testing. The second test session was identical to the first, but the drink not previously administered was ingested prior to testing.

Results

The results indicated there were no significant effects of caffeine on PT, PP, MP, FP, or EMG and MMG measures. However, RTD was positively affected by caffeine (856.4 ± 246.4 Nm/s) compared to the placebo condition (710.9 ± 267.9 Nm/s).

Conclusions

These results suggest that caffeine can be an effective aid for sport activities requiring maximal rates of force or torque development during very short time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andre T, Green M, Gann J, O’Neal E, Coates T. Effects of caffeine on repeated upper/lower body Wingates and handgrip performance. Int J Exer Sci. 2015;8(3):243–55.

    Google Scholar 

  2. Anselme F, Collomp K, Mercier B, Ahmaidi S, Prefaut C. Caffeine increases maximal anaerobic power and blood lactate concentration. Eur J Appl Physiol Occup Physiol. 1992;65(2):188–91.

    Article  CAS  Google Scholar 

  3. Antonio J. Caffeine: the forgotten ergogenic aid. Strength Cond J. 2004;26(6):50–1.

    Google Scholar 

  4. Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24(1):257–65. https://doi.org/10.1519/JSC.0b013e3181c1f88a.

    Article  PubMed  Google Scholar 

  5. Bar-Or O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987;4(6):381–94.

    Article  CAS  Google Scholar 

  6. Barry DT, Cole NM. Fluid mechanics of muscle vibrations. Biophys J. 1988;53(6):899–905.

    Article  CAS  Google Scholar 

  7. Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve. 2011;43(6):839–44. https://doi.org/10.1002/mus.21995.

    Article  CAS  PubMed  Google Scholar 

  8. Beck TW, Housh TJ, Schmidt RJ, Johnson GO, Housh DJ, Coburn JW, Malek MH. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J Strength Cond Res. 2006;20(3):506–10.

    PubMed  Google Scholar 

  9. Behrens M, Mau-Moeller A, Heise S, Skripitz R, Bader R, Bruhn S. Alteration in neuromuscular function of the plantar flexors following caffeine ingestion. Scand J Med Sci Sports. 2015;25(1):e50–8. https://doi.org/10.1111/sms.12243.

    Article  PubMed  Google Scholar 

  10. Behrens M, Mau-Moeller A, Weippert M, Fuhrmann J, Wegner K, Skripitz R, Bader R, Bruhn S. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci Rep. 2015;5(1):10209. https://doi.org/10.1038/srep10209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93(4):1227–34. https://doi.org/10.1152/japplphysiol.00187.2002.

    Article  CAS  PubMed  Google Scholar 

  12. Bell DG, Jacobs I, Ellerington K. Effect of caffeine and ephedrine ingestion on anaerobic exercise performance. Med Sci Sports Exerc. 2001;33(18):1399–403.

    Article  CAS  Google Scholar 

  13. Cakir-Atabek H. Effects of acute caffeine ingestion on anaerobic cycling performance in recreationally active men. J Exerc Physiol Online. 2017;20(1):46–58.

    Google Scholar 

  14. Salatto RW, Arevalo JA, Brown LE, Wiersma LD, Coburn JW. Caffeine’s effects on an upper-body resistance exercise workout. J Strength Cond Res. 2018. https://doi.org/10.1519/JSC.0000000000002691.

    Article  PubMed  Google Scholar 

  15. Coburn JW, Housh TJ, Cramer JT, Weir JP, Miller JM, Beck TW, Malek MH, Johnson GO. Mechanomyographic and electromyographic responses of the vastus medialis muscle during isometric and concentric muscle actions. J Strength Cond Res. 2005;19(2):412–20. https://doi.org/10.1519/15744.1.

    Article  PubMed  Google Scholar 

  16. Collomp K, Ahmaidi S, Audran M, Chanal JL, Prefaut C. Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate Test. Int J Sports Med. 1991;12(5):439–43. https://doi.org/10.1055/s-2007-1024710.

    Article  CAS  PubMed  Google Scholar 

  17. Collomp K, Ahmaidi S, Chatard JC, Audran M, Prefaut C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol Occup Physiol. 1992;64(4):377–80.

    Article  CAS  Google Scholar 

  18. Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports. 1978;10(3):155–8.

    CAS  PubMed  Google Scholar 

  19. Cramer JT, Housh TJ, Johnson GO, Ebersole KT, Perry SR, Bull AJ. Mechanomyographic and electromyographic responses of the superficial muscles of the quadriceps femoris during maximal, concentric isokinetic muscle actions. Isokin Exerc Sci. 2000;8(2):109–17.

    Article  Google Scholar 

  20. Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39(10):813–32. https://doi.org/10.2165/11317770-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  21. Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13(4):392–9. https://doi.org/10.1080/17461391.2011.635811.

    Article  PubMed  Google Scholar 

  22. Duncan MJ, Thake CD, Downs PJ. Effect of caffeine ingestion on torque and muscle activity during resistance exercise in men. Muscle Nerve. 2014;50(4):523–7. https://doi.org/10.1002/mus.24179.

    Article  PubMed  Google Scholar 

  23. Duncan MJ, Dobell AP, Caygill CL, Eyre E, Tallis J. The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. Eur J Sport Sci. 2019;19(1):103–11. https://doi.org/10.1080/17461391.2018.1508505.

    Article  PubMed  Google Scholar 

  24. EFSA Panel on Dietetic Products NaA. Scientific opinion on the safety of caffeine. EFSA J. 2015;13(5):4102.

    Google Scholar 

  25. Evetovich TK, Housh TJ, Stout JR, Johnson GO, Smith DB, Ebersole KT. Mechanomyographic responses to concentric isokinetic muscle contractions. Eur J Appl Physiol Occup Physiol. 1997;75(2):166–9.

    Article  CAS  Google Scholar 

  26. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83–133.

    CAS  PubMed  Google Scholar 

  27. Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, Taylor L, Willoughby D, Stout J, Graves BS, Wildman R, Ivy JL, Spano M, Smith AE, Antonio J. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5. https://doi.org/10.1186/1550-2783-7-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gordon R, Holbourn HS. The sounds from single motor units in contracting skeletal muscle. J Physiol. 1948;107(4):456–64.

    Article  CAS  Google Scholar 

  29. Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807.

    Article  CAS  Google Scholar 

  30. Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995;78(3):867–74.

    Article  CAS  Google Scholar 

  31. Graham TE, Rush JW, van Soeren MH. Caffeine and exercise: metabolism and performance. Can J Appl Physiol. 1994;19(2):111–38.

    Article  CAS  Google Scholar 

  32. Greer F, McLean C, Graham TE. Caffeine, performance, and metabolism during repeated Wingate exercise tests. J Appl Physiol. 1998;85(4):1502–8. https://doi.org/10.1152/jappl.1998.85.4.1502.

    Article  CAS  PubMed  Google Scholar 

  33. Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15(1):11. https://doi.org/10.1186/s12970-018-0216-0.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ivy JL, Costill DL, Fink WJ, Lower RW. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports. 1979;11(1):6–11.

    Article  CAS  Google Scholar 

  35. Jacobson BH, Edwards SW. Influence of two levels of caffeine on maximal torque at selected angular velocities. J Sports Med Phys Fit. 1991;31(2):147–53.

    CAS  Google Scholar 

  36. Jacobson BH, Weber MD, Claypool L, Hunt LE. Effect of caffeine on maximal strength and power in elite male athletes. Br J Sports Med. 1992;26(4):276–80.

    Article  CAS  Google Scholar 

  37. Kalmar JM, Cafarelli E. Effects of caffeine on neuromuscular function. J Appl Physiol. 1999;87(2):801–8.

    Article  CAS  Google Scholar 

  38. Kalmar JM, Cafarelli E. Caffeine: a valuable tool to study central fatigue in humans? Exerc Sport Sci Rev. 2004;32(4):143–7.

    Article  Google Scholar 

  39. Lorino AJ, Lloyd LK, Crixell SH, Walker JL. The effects of caffeine on athletic agility. J Strength Cond Res. 2006;20(4):851–4. https://doi.org/10.1519/R-17445.1.

    Article  PubMed  Google Scholar 

  40. Madeleine P, Jorgensen LV, Sogaard K, Arendt-Nielsen L, Sjogaard G. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode. Eur J Appl Physiol. 2002;87(1):28–37.

    Article  Google Scholar 

  41. Orizio C, Solomonow M, Baratta R, Veicsteinas A. Influence of motor units recruitment and firing rate on the soundmyogram and EMG characteristics in cat gastrocnemius. J Electromyogr Kinesiol. 1992;2(4):232–41. https://doi.org/10.1016/1050-6411(92)90026-f.

    Article  CAS  PubMed  Google Scholar 

  42. Park ND, Maresca RD, McKibans KI, Morgan DR, Allen TS, Warren GL, metabolism e. Caffeine’s beneficial effect on maximal voluntary strength and activation in uninjured but not injured muscle. Int J Sport Nutr Exerc Metab. 2008;18(6):639–52.

    Article  Google Scholar 

  43. Ribeiro JA, Sebastiao AM. Caffeine and adenosine. J Alzheimers Dis. 2010;20(Suppl 1):S3–15. https://doi.org/10.3233/JAD-2010-1379.

    Article  CAS  PubMed  Google Scholar 

  44. Shearer J, Graham TE. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal. Nutr Rev. 2014;72(Suppl 1):121–36. https://doi.org/10.1111/nure.12124.

    Article  PubMed  Google Scholar 

  45. Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(Suppl 2):S175–84. https://doi.org/10.1007/s40279-014-0257-8.

    Article  PubMed  Google Scholar 

  46. Stokes MJ. Acoustic myography: applications and considerations in measuring muscle performance. Isokinet Exerc Sci. 1993;3(1):4–15.

    Article  Google Scholar 

  47. Trevino MA, Coburn JW, Brown LE, Judelson DA, Malek MH. Acute effects of caffeine on strength and muscle activation of the elbow flexors. J Strength Cond Res. 2015;29(2):513–20. https://doi.org/10.1519/JSC.0000000000000625.

    Article  PubMed  Google Scholar 

  48. Walton C, Kalmar JM, Cafarelli E. Effect of caffeine on self-sustained firing in human motor units. J Physiol. 2002;545(2):671–9.

    Article  CAS  Google Scholar 

  49. Walton C, Kalmar J, Cafarelli E. Caffeine increases spinal excitability in humans. Muscle Nerve. 2003;28(3):359–64. https://doi.org/10.1002/mus.10457.

    Article  CAS  PubMed  Google Scholar 

  50. Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42(1):1375–87. https://doi.org/10.1249/MSS.0b013e3181cabbd8.

    Article  CAS  PubMed  Google Scholar 

  51. Williams JH, Barnes WS, Gadberry WL. Influence of caffeine on force and EMG in rested and fatigued muscle. Am J Phys Med. 1987;66(4):169–83.

    CAS  PubMed  Google Scholar 

  52. Zatsiorsky VM, Kraemer WJ. Science and practice of strength training. Champaign, IL: Human Kinetics; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BMP: significant manuscript writer; significant manuscript reviewer/reviser; concept and design; data acquisition; data analysis and interpretation. LEB: significant manuscript reviewer/reviser; concept and design; data acquisition; data analysis and interpretation. DAJ: significant manuscript reviewer/reviser; concept and design; data analysis and interpretation. SGR: data acquisition; data analysis and interpretation. JWC: significant manuscript writer; significant manuscript reviewer/reviser; concept and design; data acquisition; data analysis and interpretation. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Corresponding author

Correspondence to Jared W. Coburn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, B.M., Brown, L.E., Judelson, D.A. et al. Caffeine Increases Rate of Torque Development Without Affecting Maximal Torque. J. of SCI. IN SPORT AND EXERCISE 1, 248–256 (2019). https://doi.org/10.1007/s42978-019-00048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-00048-y

Keywords

Navigation