Skip to main content
Log in

Comparative transcriptome analysis of two maize genotypes with different tolerance to salt stress

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

A better understanding of the molecular effects of salinity stress is key to improving salt tolerance in Zea mays. In this study, we combined phenotyping with transcript profiling to study genotype-specific differences in salt tolerance in Zea mays. An extensive phenotypic screening identified two genotypes with extreme phenotypic differences in tolerance toward salt stress. De novo RNA-seq analysis of the selected salt-tolerant (R9) and salt-sensitive (S46) genotype was performed to unveil the molecular mechanisms underlying the differences in salt tolerance between the two genotypes. A number of 5884 and 5556 unique transcripts were identified that were uniquely expressed in the R9 and S46 genotypes, respectively. GO enrichment showed that processes such as cellular response to calcium ion, and regulation of secondary metabolites biosynthesis has been highly diverged between the two genotypes at the transcriptome level. Comparing salt treated with control samples for each genotype showed enrichment for salt tolerance related mechanisms, i.e., potassium ion transport and cation/ion transmembrane transport, in the tolerant genotype only. We hypothesized that more efficient potassium uptake and different response to calcium ions can contribute to better ionic hemostasis and subsequently more salt tolerance for the R9 genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The RNA-seq data has been deposited to the National Centre for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under the submission name: SRP273987.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. Babraham Institute, Cambridge

  • Aziz A, Martin-Tanguy J, Larher F (1998) Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plant 104:195–202

    Article  CAS  Google Scholar 

  • Balan B, Marra FP, Caruso T, Martinelli F (2018) Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  • Ballhorn DJ, Elias JD (2014) Salinity-mediated cyanogenesis in white clover (Trifolium repens) affects trophic interactions. Ann Bot 114:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behera LM, Hembram P (2021) Advances on plant salinity stress responses in the post-genomic era: a review. J Crop Sci Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolte S, Schiene K, Dietz K-J (2000) Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. Plant Mol Biol 42:923–935

    Article  CAS  PubMed  Google Scholar 

  • Carruthers M, Yurchenko AA, Augley JJ, Adams CE, Herzyk P, Elmer KR (2018) De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics 19:1–17

    Google Scholar 

  • Chen F, Fang P, Zeng W, Ding Y, Zhuang Z, Peng Y (2020) Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS ONE 15:e0233616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Dusemund B, Rietjens IM, Abraham K, Cartus A, Schrenk D (2017) Undesired plant-derived components in food. In: Chemical contaminants and residues in food. Elsevier, pp 379–424

  • Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:1–14

    Article  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize: effects, resistance mechanisms, and management: a review. Agron Sustain Dev 35:461–481

    Article  CAS  Google Scholar 

  • Fu H-H, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y et al (2016) Ability to remove Na+ and retain K+ correlates with salt tolerance in two maize inbred lines seedlings. Front Plant Sci 7:1716

    Article  PubMed  PubMed Central  Google Scholar 

  • Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crops Prod 64:175–181

    Article  Google Scholar 

  • Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Ann Rev Plant Biol 65:155–185

    Article  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X et al (2016) Solanum lycopersicum agamous-like MADS-box protein AGL15-like gene, SlMBP11, confers salt stress tolerance. Mol Breed 36:1–15

    Article  Google Scholar 

  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan MB, Al Mahmud J, Baluska F, Fujita M (2018) Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol Rep 12:77–92

    Article  Google Scholar 

  • Hu L, Li H, Chen L, Lou Y, Amombo E, Fu J (2015) RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress. BMC Genomics 16:1–12

    Article  Google Scholar 

  • Isayenkov S (2012) Physiological and molecular aspects of salt stress in plants. Cytol Genet 46:302–318

    Article  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaleel CA, Sankar B, Sridharan R, Panneerselvam R (2008) Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk J Biol 32:79–83

    Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:1–10

    Article  Google Scholar 

  • Leng X, Jia H, Sun X, Shangguan L, Mu Q, Wang B, Fang J (2015) Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep 5:1–17

    Article  Google Scholar 

  • Li P et al (2017) Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Front Plant Sci 8:290

    PubMed  PubMed Central  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li R-J, Han T-T, Cai W, Fu Z-W, Lu Y-T (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manishankar P, Wang N, Köster P, Alatar AA, Kudla J (2018) Calcium signaling during salt stress and in the regulation of ion homeostasis. J Exp Bot 69:4215–4226

    Article  CAS  Google Scholar 

  • Mansour M, Salama K, Ali F, Abou Hadid A (2005) Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen Appl Plant Physiol 31:29–41

    CAS  Google Scholar 

  • Mimura M et al (2016) Arabidopsis TH2 encodes the orphan enzyme thiamin monophosphate phosphatase. Plant Cell 28:2683–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaei M, Pascovici D, Atwell BJ, Haynes PA (2012) Differential regulation of aquaporins, small GTP ases and V-ATP ases proteins in rice leaves subjected to drought stress and recovery. Proteomics 12:864–877

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Ngara R, Ndimba R, Borch-Jensen J, Jensen ON, Ndimba B (2012) Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J Proteomics 75:4139–4150

    Article  CAS  PubMed  Google Scholar 

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pott DM, Osorio S, Vallarino JG (2019) From central to specialized metabolism: an overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Front Plant Sci 10:835

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Schreiber L (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62:1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Schwacke R et al (2019) MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant 12:879–892

    Article  CAS  PubMed  Google Scholar 

  • Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. In: Gene prediction. Springer, pp 227–245

  • Seyed Rahmani R et al (2021) Genome-wide expression and network analyses of mutants in key brassinosteroid signaling genes. BMC Genomics 22:1–17

    Article  Google Scholar 

  • Shahzad M, Witzel K, Zörb C, Mühling K (2012) Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress. J Agron Crop Sci 198:46–56

    Article  CAS  Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307

    Article  Google Scholar 

  • Shivhare R, Lakhwani D, Asif MH, Chauhan PS, Lata C (2020) De novo assembly and comparative transcriptome analysis of contrasting pearl millet (Pennisetum glaucum L.) genotypes under terminal drought stress using illumina sequencing. Nucleus 63:341–352

    Article  Google Scholar 

  • Springer NM et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X (2010) Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol 51:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalai G, Janda T (2009) Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci 195:165–171

    Article  CAS  Google Scholar 

  • Thimm O et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • TransDecoder (2021). https://github.com/TransDecoder/TransDecoder

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Bel M et al (2018) PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucl Acids Res 46:D1190–D1196

    Article  PubMed  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Ann Rev Plant Biol 71:403–433

    Article  Google Scholar 

  • Vishwakarma K et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Chen Y, Zhang M, Chen J, Liu J, Han H, Hua X (2017) Arabidopsis AMINO ACID PERMEASE1 contributes to salt stress-induced proline uptake from exogenous sources. Front Plant Sci 8:2182

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterhouse RM et al (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35:543–548

    Article  CAS  PubMed  Google Scholar 

  • Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    Article  CAS  PubMed  Google Scholar 

  • Zhang F et al (2016) Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep 6:1–15

    Google Scholar 

  • Zhang Z, Mao C, Shi Z, Kou X (2017) The amino acid metabolic and carbohydrate metabolic pathway play important roles during salt-stress response in tomato. Front Plant Sci 8:1231

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2018) Characterization of the Populus Rab family genes and the function of PtRabE1b in salt tolerance. BMC Plant Biol 18:124

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was funded by the Office of Vice Chancellor for Research, Urmia University, Urmia, Iran, (Project No. 94/101/T.T) and by Grants of the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO, Belgium) [3G046318, G.0371.06, 3G045620]. Razgar Seyed Rahmani holds a personal grant of the Ministry of Science Research and Technology, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Darvishzadeh or Kathleen Marchal.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Communicated by J. Zimny.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

(DOCX 2404 KB). Supplementary figures and tables.

Supplementary file 2

(FASTA 88990 KB). The assembled transcripts for the R9 (tolerant) genotype in fasta format.

Supplementary file 3

(FASTA 88576 KB). The assembled transcripts for the S46 (sensitive) genotype in fasta format.

Supplementary file 4

(XLSX 98 KB). The lists of uniquely expressed transcripts in the R9 and S46 genotypes.

Supplementary file 5

(XLSX 4813 KB). Differentially expressed transcript results for the R9 and S46 geontypes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohasseli, T., Seyed Rahmani, R., Darvishzadeh, R. et al. Comparative transcriptome analysis of two maize genotypes with different tolerance to salt stress. CEREAL RESEARCH COMMUNICATIONS 50, 797–810 (2022). https://doi.org/10.1007/s42976-022-00271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-022-00271-4

Keywords

Navigation