Skip to main content
Log in

QTL mapping for adult-plant resistance to powdery mildew in Chinese elite common wheat Chuanmai104

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major fungal disease of wheat worldwide. The economic and environmentally friendly strategy is developing the wheat varieties with resistance to powdery mildew in wheat-breeding program. Chuanmai104 (CM104, Triticum aestivum L.), derived from synthetic hexaploid wheat, was an elite wheat variety with high adult-plant resistance to powdery mildew. The phenotype of powdery mildew resistance was conducted on a set of 234 recombinant inbred lines (RIL, F8) derived from the cross of CM104 and high susceptible wheat landrace Baimaomai (BMM) in five environments in this study. Three QTLs were identified on chromosomes 7D and 4A by the high-density wheat 50 K single-nucleotide polymorphism array, designed as QPm.saas-7DS, QPm.saas-4AL and QPm.saas-4AS, respectively. Of the three QTLs, QPm.saas-7DS derived from BMM and QPm.saas-4AL derived from CM104 were minor locus, QPm.saas-4AS derived from CM104 was detected as a new major locus for adult-plant resistance to powdery mildew in all environments and localized in a 1.06 Mb interval of the genomic region on chromosome arm 4AS referenced to Chinese Spring genome explained up to 26.5% of the phenotypic variances. The newly major locus QPm.saas-4AS would be supplied as a resistant source in wheat-breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Bgt :

Blumeria graminis f. sp. tritici

CM104:

Chuanmai104

SHW:

Synthetic hexaploid wheat

BMM:

Baimaomai

QTL:

Quantitative trait loci

RIL:

Recombinant inbred lines

SNP:

Single-nucleotide polymorphism

References

  • Asad MA, Bai B, Lan CX, Yan J, Xia XC, Zhang Y, He ZH (2012) Molecular mapping of quantitative trait loci for adult-plant resistance to powdery mildew in Italian wheat cultivar Libellula. Crop Pasture Sci 63:539–546

    CAS  Google Scholar 

  • Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 33:279–300

    Google Scholar 

  • Geng M, Zhang J, Peng F, Liu X, Lv X, Mi Y, Li Y, Li F, Xie C, Sun Q (2016) Identification and mapping of MLIW30, a novel powdery mildew resistance gene derived from wild emmer wheat. Mol Breed 36:130

    Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    CAS  PubMed  Google Scholar 

  • Hao Y, Parks R, Cowger C, Chen Z, Wang Y, Bland D, Murphy JP, Guedira M, Brown-Guedira G, Johnson J (2015) Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 128:465–476

    CAS  PubMed  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    CAS  PubMed  Google Scholar 

  • Huang Q, Jing RL, Wu XY, Cao LP, Chang XP, Zhang XZ, Huang TR (2008) QTL mapping for adult-plant resistance to powdery mildew in common wheat. Sci Agric Sin 41:2528–2536

    CAS  Google Scholar 

  • Huo NX, Zhou RH, Zhang LF, Jia JZ (2005) Mapping quantitative trait loci for powdery mildew resistance in wheat. Acta Agron Sin 6:692–696

    Google Scholar 

  • IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  • Janakova E, Jakobson I, Peusha H, Abrouk M, Skopova M, Simkova H, Safar J, Vrana J, Dolezel J, Jarve K, Valarik M (2019) Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene. Theor Appl Genet 132:1061–1072

    CAS  PubMed  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    CAS  PubMed  Google Scholar 

  • Jia A, Ren Y, Gao F, Yin G, Liu J, Guo L, Zheng J, He Z, Xia X (2018) Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. Theor Appl Genet 131:1063–1071

    PubMed  Google Scholar 

  • Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet 98:903–912

    CAS  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    CAS  PubMed  Google Scholar 

  • Laluk K, AbuQamar S, Mengiste T (2011) The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol 156:2053–2068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wan HS, Yang WY, Wang Q, Zhu XG, Hu XR, Wei HT, Tang YL, Li CS, Peng ZS, Zhou YH (2014a) Dissection of genetic components in the new high-yielding wheat cultivar Chuanmai 104. Sci Agric Sin 47(12):2281–2291

    CAS  Google Scholar 

  • Li Z, Lan C, He Z, Singh RP, Rosewarne GM, Chen X, Xia X (2014b) Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci 54:1907–1925

    Google Scholar 

  • Li J, Wan H, Wei H, Wang Q, Zhou Y, Yang W (2017a) QTL mapping for early vigor related traits in an elite wheat-breeding parent Chuanmai42 derived from synthetic hexaploid wheat. Pak J Agric Sci 55:33–45

    CAS  Google Scholar 

  • Li J, Wang X, Zhang L, Meng Q, Zhang N, Yang W, Liu D (2017b) A wheat NBS-LRR gene TaRGA19 participates in Lr19-mediated resistance to Puccinia triticina. Plant Physiol Biochem 119:1–8

    CAS  Google Scholar 

  • Li A, Liu D, Yang W, Kishii M, Mao L (2018) Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering 4(4):552–558

    CAS  Google Scholar 

  • Li G, Cowger C, Wang X, Carver BF, Xu X (2019) Characterization of Pm65, a new powdery mildew resistance gene on chromosome 2AL of a facultative wheat cultivar. Theor Appl Genet 132(9):2625–2632

    CAS  PubMed  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    CAS  PubMed  Google Scholar 

  • Lindner S, Keller B, Singh SP, Hasenkamp Z, Jung E, Muller MC, Bourras S, Keller B (2020) Single residues in the LRR domain of the wheat PM3A immune receptor can control the strength and the spectrum of the immune response. Plant J. https://doi.org/10.1111/tpj.14917

  • Liu ZY, Sun QX, Ni ZF, Yang TM (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215–219

    CAS  Google Scholar 

  • Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Ma H, Zhang Z (2013) Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 64:2243–2253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Frick M, Huel R, Nykiforuk CL, Wang X, Gaudet DA, Eudes F, Conner RL, Kuzyk A, Chen Q, Kang Z, Laroche A (2014) Strip rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant 7:1740–1755

    CAS  PubMed  Google Scholar 

  • Long YM, Chao WS, Ma GJ, Xu SS, Qi LL (2017) An innovative SNP genotyping method adapting to multiple platforms and throughput. Theor Appl Genet 130:597–607

    CAS  PubMed  Google Scholar 

  • Ma J, Zhang H, Li S, Zou Y, Li T, Liu J, Ding P, Mu Y, Tang H, Deng M, Liu Y, Jiang Q, Chen G, Kang H, Li W, Pu Z, Wei Y, Zheng Y, Lan X (2019a) Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genet 20:77

    PubMed  PubMed Central  Google Scholar 

  • Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Wang J, Deng M, Qi P, Li W, Pu Z, Zheng Y, Wei Y, Lan X (2019b) Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet 132:3155–3167

    CAS  PubMed  Google Scholar 

  • Ma J, Qin N, Cai B, Chen G, Ding P, Zhang H, Yang C, Huang L, Mu Y, Tang H, Liu Y, Wang J, Qi P, Jiang Q, Zheng Y, Liu C, Lan X, Wei Y (2019c) Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theor Appl Genet 132:1363–1373

    CAS  PubMed  Google Scholar 

  • Meng L, Li HH, Zhang LY, Wang JK (2015) IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental population. Crop J 3:269–283

    Google Scholar 

  • Park S, Gupta R, Krishna R, Kim ST, Lee DY, Hwang D, Bae SC, Ahn IP (2016) Proteome analysis of disease resistance against Ralstonia solanacearum in potato cultivar CT206-10. Plant Pathol J 32:25–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng F, Song N, Shen H, Wu H, Dong H, Zhang J, Li Y, Peng H, Ni Z, Liu Z, Yang T, Li B, Xie C, Sun Q (2014) Molecular mapping of a recessive powdery mildew resistance gene in spelt wheat cultivar Hubel. Mol Breed 34:491–500

    CAS  Google Scholar 

  • Petersen S, Lyerly JH, Worthington ML, Parks WR, Cowger C, Marshall DS, Brown-Guedira G, Murphy JP (2015) Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor Appl Genet 18:303–312

    Google Scholar 

  • Piarulli L, Gadaleta A, Mangini G, Signorile MA, Pasquini M, Blanco A, Simeone R (2012) Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci 196:101–106

    CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, charomosomal locations and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    CAS  PubMed  Google Scholar 

  • Schmolke M, Mohler V, Hartl L, Zeller FJ, Hsam SLK (2012) A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed 29:449–456

    CAS  Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jorgensen LN, Hovmoller MS, Julio HE (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    CAS  PubMed  Google Scholar 

  • Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R, Lagudah ES (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet 116:481–490

    CAS  PubMed  Google Scholar 

  • Sun H, Hu J, Song W, Qiu D, Cui L, Wu P, Zhang H, Li H, Yang L, Qu Y, Li Y, Li T, Cheng W, Zhou Y, Liu Z, Li J, Li H (2018a) Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang, identified by comparative genomics analysis. Theor Appl Genet 131:2085–2097

    CAS  PubMed  Google Scholar 

  • Sun X, Yu G, Li J, Liu J, Wang X, Zhu G, Zhang X, Pan H (2018b) AcERF2, an ethylene-responsive factor of Atriplex canescens, positively modulates osmotic and disease resistance in Arabidopsis thaliana. Plant Sci 274:32–43

    CAS  PubMed  Google Scholar 

  • Tang JP, Zhang WW, Wen K, Chen G, Sun J, Tian Y, Tang W, Yu J, An H, Wu T, Kong F, Terzaghi W, Wang C, Wan J (2017) OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. Plant Mol Biol 95:345–357

    CAS  PubMed  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Google Scholar 

  • Wu P, Hu J, Zou J, Qiu D, Qu Y, Li Y, Li T, Zhang H, Yang L, Liu H, Zhou Y, Zhang Z, Li J, Liu Z, Li H (2019) Fine mapping of the wheat powdery mildew resistance gene Pm52 using comparative genomics analysis and the Chinese Spring reference genomic sequence. Theor Appl Genet 132:1451–1461

    CAS  PubMed  Google Scholar 

  • Xiao M, Song F, Jiao J, Wang X, Xu H, Li H (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126:1397–1403

    CAS  PubMed  Google Scholar 

  • Xiao H, Xu Y, Ni C, Zhang Q, Zhong F, Huang J, Zhu Y, Hu J (2018) A rice dual-localized pentatricopeptide repeat protein is involved in organellar RNA editing together with OsMORFs. J Exp Bot 69:2923–2936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing H, Fu X, Yang C, Tang X, Guo L, Li C, Xu C, Luo K (2018) Genome-wide investigation of pentatricopeptide repeat gene family in poplar and their expression analysis in response to biotic and abiotic stresses. Sci Rep 8(1):2817

    PubMed  PubMed Central  Google Scholar 

  • Xu H, Yao G, Xiong L, Yang L, Jiang Y, Fu B, Zhao W, Zhang Z, Zhang C, Ma Z (2008) Identification and mapping of pm2026: a recessive powdery mildew resistance gene in an einkorn (Triticum monococcum L.) accession. Theor Appl Genet 117:471–477

    CAS  PubMed  Google Scholar 

  • Xu Z, Wang S, Zhang Z, Zhang Y, Ji H, Ni J, Zhou Y, Peng Y (2019) Population virulence of Blumeria graminis f. sp. tritici in Sichuan Basin during 2014–2016. J Triticeae Crops 39(2):247–252

    Google Scholar 

  • Xu X, Zhu Z, Jia A, Wang F, Wang J, Zhang Y, Fu C, Fu L, Bai G, Xia X, Hao Y, He Z (2020) Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica 216:3

    CAS  Google Scholar 

  • Zhang Z, Chen J, Su Y, Liu H, Chen Y, Luo P, Du X, Wang D, Zhang H (2015) TaLHY, a 1R-MYB transcription factor, play an important role in disease resistance against stripe rust fungus and ear heading in wheat. PLoS ONE 10(5):e0127723

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFD0100900), the Program of Chinese Agriculture Research System (CARS-03), the Scientific and Technological Program of Sichuan Province (2016NYZ0030 and 2016NYZ0049) and the Innovation Capacity Improvement Project of Sichuan Province (2016ZYPZ-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Li or W. Yang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Communicated by K. Posta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, Q., Wan, H. et al. QTL mapping for adult-plant resistance to powdery mildew in Chinese elite common wheat Chuanmai104. CEREAL RESEARCH COMMUNICATIONS 49, 99–108 (2021). https://doi.org/10.1007/s42976-020-00082-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-020-00082-5

Keywords

Navigation