Skip to main content
Log in

Discrete steps of successional pathways differ in kelp forest and urchin barren communities

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

The role of organisms in community assembly and functioning is a crucial question of community ecology. We address this issue in a particular marine coastal ecosystem at SE Pacific: although kelp forests and urchin barrens are conspicuous benthic systems in rocky habitats, only a few studies have been focused on studying their successional patterns (especially following disturbances). In this work, we present successional pathways from micro-periphyton to macro-organisms observed during a 14-month period in kelp forests and urchin barrens in the Antofagasta Peninsula, Chile. The community composition and structure showed habitat-specific successional pathways with different dominant organisms in these two communities. Likewise, during their successional trajectories, both communities showed different number of discrete temporal stages. Kelp forests displayed a longer successional pathway of 7 discrete stages, while the barren bed succession pathway was composed only of 4 stages. We argue that this difference would be due to self-organising processes. This finding may have relevant implications for conservation and monitoring, since the intensive harvest of kelp species will not only increase the dominance of urchin barrens, but it would also facilitate its own, self-determined, more efficient (with few steps) successional pattern and the consequent persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

nMDS:

Non-metric multidimensional scaling ordination

PERMAVOVA:

Permutation-based multivariate analysis of variance

RELATE:

Testing matched similarity matrices

CAP:

Canonical analysis of principal coordinates

References

  • Abelson, A., & Denny, M. (1997). Settlement of marine organisms in flow. Annual Review of Ecology and Systematics, 28, 317–339.

    Google Scholar 

  • Agnetta, D., Badalamenti, F., Ceccherelli, G., Di Trapani, F., Bonaviri, C., & Gianguzza, P. (2015). Role of two co-occurring Mediterranean sea urchins in the formation of barren from Cystoseira canopy. Estuarine, Coastal and Shelf Science, 152, 73–77.

    Google Scholar 

  • Aguilera, M. A., & Navarrete, S. A. (2012). Functional identity and functional structure change through succession in a rocky intertidal marine herbivore assemblage. Ecology, 93(1), 75–89.

    PubMed  Google Scholar 

  • Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: a useful. Ecology, 84(2), 511–525.

    Google Scholar 

  • Anderson, M.J., Gorley K.R., Clarke, K.R. (2008). PERMANOVA+ for PRIMER: Guide to software and statistical methods. PRIMER-E: Plymouth, UK.

  • Becherucci, M. E., Llanos, E. N., & G.V., Garaffo and E.A. Vallarino. . (2016). Succession in an intertidal benthic community affected by untreated sewage effluent: A case of study in the SW Atlanthic shore. Marine Pollution Bulletin, 109, 95–103.

    CAS  PubMed  Google Scholar 

  • Benedetti-Cecchi, L., & Cinelli, F. (1996). Patterns of disturbance and recovery in littoral rock pools: nonhierarchical competition and spatial variability in secondary succession. Marine Ecology Progress Series, 135, 145–161.

    Google Scholar 

  • Berlow, E. (1997). From canalization to contingency: historical effects in a successional rocky intertidal community. Ecological Monographs, 64, 435–460.

    Google Scholar 

  • Bulleri, F., & Benedetti-Cecchi, L. (2006). Mechanisms of recovery and resilience of different components of mosaics of habitats on shallow rocky reefs. Oecologia, 149, 482–492.

    PubMed  Google Scholar 

  • Byrnes, J., Stachowitz, J. J., Hultgren, K. M., Hughes, A. R., Olyarnik, S. V., & Thornber, C. S. (2006). Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behavior. Ecology Letters, 9, 61–71.

    PubMed  Google Scholar 

  • Castilla, J.C. and C.A. Moreno. (1982). Sea urchins and Macrocystis pyrifera: Experimental test of their ecological relations in southern Chile. In: J.M. Lawrence (Ed.), Proceedings of the International Echinoderm Conference (pp. 257–263). Rotterdam.

  • Christie, H., Gundersen, H., Rinde, E., Filbee-Dexter, K., Norderhaug, K. M., Pedersen, T., et al. (2019). Can multitrophic interactions and ocean warming influence large-scale kelp recovery? Ecology and evolution, 9, 2847–2862.

    PubMed  PubMed Central  Google Scholar 

  • Cifuentes, M., Krueger, I., Domont, C. P., Lenz, M., & Thiel, M. (2010). Does primary colonization or community structure determine the succession of fouling communities? Journal of Experimental Marine Biology and Ecology, 395, 10–20.

    Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). User manual/tutorial. Plymouth: PRIMER-E Ltd.

    Google Scholar 

  • Connell, J., & Slatyer, R. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 111, 1119–1144.

    Google Scholar 

  • Dayton, P. K. (1985). The structure and regulation of some south American kelp communities. Ecological Monographs, 55, 447–468.

    Google Scholar 

  • Dean, R. L., & Connell, J. H. (1987). Marine invertebrates in an algal succession. II. Tests of hypothesis to explain changes in diversity with succession. Journal of Experimental Marine Biology and Ecology, 109, 217–247.

    Google Scholar 

  • Denny, M. W., & Gaylord, B. (2010). Marine ecomechanics. Annual Review of Marine Science, 2, 89–114.

    PubMed  Google Scholar 

  • Estes, J. A., Tinker, M. T., Williams, T. M., & Doak, D. F. (1998). Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science, 282, 473–476.

    CAS  PubMed  Google Scholar 

  • Farrell, T. (1991). Models and mechanisms of succession: An example from a rocky intertidal community. Ecological Monographs, 61(1), 95–113.

    Google Scholar 

  • Filbee-Dexter, K., & Scheibling, R. (2017). The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins. Ecology, 98(1), 253–264.

    PubMed  Google Scholar 

  • Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K. M., & Pedersen, M. F. (2019). Arctic kelp forest: diversity, resilience and future. Global and Planetary Change, 172, 1–14.

    Google Scholar 

  • Fildbee-Dexter, K., & Scheibling, R. (2014). Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Marine Ecology Progress Series, 495, 1–25.

    Google Scholar 

  • Flukes, E. B., Johnson, C. R., & Ling, S. D. (2012). Forming sea urchin barrens from the inside out: an alternative pattern of overgrazing. Marine Ecology Progress Series, 464, 179–194.

    Google Scholar 

  • Foster, M. S., Nigg, E. W., Kiguchi, L. M., Hardin, D. D., & Pearse, J. S. (2003). Temporal variation and succession in an algal-dominated high intertidal assemblage. Journal of Experimental Marine Biology and Ecology, 289, 15–39.

    Google Scholar 

  • González-Duarte, M. M., Fernández-Montblanc, T., & Bethencourt, M. (2018). Effects of substrata and environmental conditions on ecological succession on historic shipwrecks. Estuarine, Coastal and Shelf Science, 200, 301–310.

    Google Scholar 

  • Hirata, T. (1987). Succession of sessile organisms on experimental plates immersed in Nabeta Bay, Izu Peninsula, Japan. II. Succession of invertebrates. Marine Ecology Progress Series, 38, 25–35.

    Google Scholar 

  • Jackson, J., Kirby, M., Berger, W., Bjorndal, K., Botsford, L., Bourque, B., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–637.

    CAS  PubMed  Google Scholar 

  • Kogure, K., Simidu, U., & Taga, M. (1979). A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology, 25, 415–420.

    CAS  PubMed  Google Scholar 

  • Kordas, R. L., Donohue, I., & Harley, C. (2017). Herbivory enables marine communities to resist warming. Science Advances, 3, e1701349.

    PubMed  PubMed Central  Google Scholar 

  • Lefcheck, J. S., Wilcox, D., Murphy, R., Marion, S., & Orth, R. (2017). Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Global Change Biology. https://doi.org/10.1111/gcb.13623.

    Article  PubMed  Google Scholar 

  • Maggi, E., Bertocci, I., Vaselli, S., & Benedetti-Cecchi, L. (2009). Effects of changes in number, identity and abundance of habitat-forming species on assemblages of rocky seashores. Marine Ecology Progress Series, 381, 39–49.

    Google Scholar 

  • Maggi, E., Bertocci, I., Vaselli, S., & Benedetti-Cecchi, L. (2011). Connell and Slatyer’s models of succession in the biodiversity era. Ecology, 92(7), 1399–1406.

    CAS  PubMed  Google Scholar 

  • Manoudis, G., Antoniadou, C., Dounas, K., & Chintiroglou, C. (2005). Successional stages of experimental artificial reefs deployed in Vistonikos gulf (N. Aegean Sea, Greece): Preliminary results. Belgian Journal of Zoology, 135, 209–215.

    Google Scholar 

  • Marzloff, M. P., Johnson, C. R., Little, L. R., Soulie, J. C., Ling, S. D., & Frusher, S. D. (2013). Sensitivity analysis and pattern-oriented validation of TRITON, a model with alternative community states: insights on temperate rochy reefs dynamics. Ecological Modelling, 258, 16–32.

    Google Scholar 

  • McCook, L. J. (1994). Understanding ecological community succession: Causal models and theories, a review. Vegetatio, 110(2), 115–147.

    Google Scholar 

  • Nishijima, W., Nakano, Y., Nakai, S., Okuda, T., Imai, T., & Okada, M. (2014). Macrobenthic succession and characteristics of a man-made intertidal sandflat constructed in the diversión cannel of the Ohta River Estuary. Marine Pollution Bulletin, 82, 101–108.

    CAS  PubMed  Google Scholar 

  • Odum, E. P. (1969). The strategy of ecosystem development. Science, 164, 262–270.

    CAS  PubMed  Google Scholar 

  • Ojeda, F. P., & Santelices, B. (1984). Invertebrate communities in holdfasts of the kelp Macrocystis pyrifera from southern Chile. Marine ecology progress series., 16, 65–73.

    Google Scholar 

  • Ortiz, M. (2003). Qualitative modelling of the kelp forest of Lessonia nigrescens bory (Laminariales: Phaeophyta) in eulittoral marine ecosystems of the south-east Pacific: An approach to management plan assessment. Aquaculture, 220, 423–436.

    Google Scholar 

  • Ortiz, M. (2008). Mass balanced and dynamic simulations of trophic models of kelp ecosystems near the Mejillones Peninsula of northern Chile (SE Pacific): Comparative network structure and assessment of harvest strategies. Ecological Modelling, 216, 31–46.

    Google Scholar 

  • Ortiz, M., & Levins, R. (2017). Self-feedbacks determine the sustainability of human interventions in eco-social complex systems: Impacts on biodiversity and ecosystem health. PLoS ONE, 12(4), e0176163.

    PubMed  PubMed Central  Google Scholar 

  • Pacheco, A. S., Laudien, J., Thiel, M., Oliva, M., & Heilmeyer, O. (2011). Succession and seasonal onset of colonization in subtidal hard-bottom communities off northern Chile. Marine Ecology, 32, 75–87.

    Google Scholar 

  • Paine, R., & Levin, S. (1981). Intertidal landscapes: Disturbance and the dynamics of pattern. Ecological Monographs, 51(2), 145–178.

    Google Scholar 

  • Porter, K., & Feig, Y. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25, 943–948.

    Google Scholar 

  • Quinn, G. P., & Keogh, M. J. (2002). Experimental design and data analysis for biologists. U.K.: Cambridge University Press.

    Google Scholar 

  • Railkin, A. (1998). The pattern of recovery of disturbed microbial communities inhabiting hard substrates. Hydrobiologia, 385, 47–57.

    CAS  Google Scholar 

  • Riascos, J. M., Uribe, R. A., Donayre, S., Flores, D., Galindo, O., Quispe, C., & González, J. (2016). Human footprints on benthic communities in marine reserves: A study case in the most productive upwelling system worldwide. Marine Ecology Progress Series, 557, 65–75.

    Google Scholar 

  • Rosman, J., Koseff, J., Monismith, S., & Grover, J. (2007). A field investigation into the effects of a kelp forest (Macrocystis pyrifera) on coastal hydrodynamics and transport. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2005JC003430.

    Article  Google Scholar 

  • Siboni, N., Lidor, M., Kramarsky-Winter, E., & Kushmaro, A. (2007). Conditioning film and initial biofilm formation on ceramics tiles in the marine environment. FEMS Microbiology Letters, 274(1), 24–29.

    CAS  PubMed  Google Scholar 

  • Steneck, R. (1997). Fisheries-induced biological changes to the structure and function of the Gulf of Maine ecosystem. In: proceedings of the gulf of maine ecosystem dynamics scientific symposium and workshop, RARGOM Report 91–1 (pp. 151–165). NH, USA.

  • Steneck, R., Graham, M., Bourque, B., Corbett, D., Erlandson, J., Estes, J., & Tegner, M. (2002). Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environmental Conservation, 29, 436–459.

    Google Scholar 

  • Teagle, H., Hawkins, S., Moore, P., & Smale, D. (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 492, 81–98.

    Google Scholar 

  • Terlizzi, A., Fraschetti, S., Guidetti, P., & Boero, F. (2002). The effects of sewage discharge on shallow hard substrate sessile assemblages. Marine Pollution Bulletin, 44(6), 544–550.

    CAS  PubMed  Google Scholar 

  • Underwood, A. J., & Chapman, M. G. (2006). Early development of subtidal macrofaunal assemblages: Relationships to period and timing of colonization. Journal of Experimental Marine Biology and Ecology, 330, 221–233.

    Google Scholar 

  • Uribe, R. A., Ortiz, M., Macaya, E. C., & Pacheco, A. S. (2015). Successional patterns of hard-bottom macrobenthic communities at kelp bed (Lessonia trabeculata) and barren ground sublittoral systems. Journal of Experimental Marine Biology and Ecology, 472, 180–188.

    Google Scholar 

  • Uribe, R. A., Ortiz, M., Pacheco, A. S., & Araya, R. (2015). Early succession of micro-periphyton communities in kelp bed and barren ground ecological systems. Marine Ecology, 36, 1415–1427.

    Google Scholar 

  • Vásquez, J. (1993). Patrones de distribución de poblaciones submareales de Lessonia trabeculata (Laminariales, Phaeophyta) en el norte de Chile. Facultad de Ciencias del Mar-UCN. Serie Ocasional, 2, 187–211.

    Google Scholar 

  • Vásquez, J. (2008). Production, use and fate of Chilean brown seaweeds: Re-sources for a sustainable fishery. Journal of Applied Phycology, 20, 457–467.

    Google Scholar 

  • Vásquez, J., & Buschmann, A. (1997). Herbivore-kelp interactions in Chilean subtidal. Revista Chilena de Historia Natural, 70(4), 52.

    Google Scholar 

  • Vásquez, J., Vega, J., & Buschmann, A. (2006). Long term variability in the structure of kelp communities in northern Chile and the 1997–98 ENSO. Journal of Applied Phycology, 18, 505–519.

    Google Scholar 

  • Vásquez, J., Piaget, N., & Vega, J. (2012). The Lessonia nigrescens fishery in northern Chile: “How you harvest is more important than how much you harvest.” Journal of Applied Phycology, 24, 417–426.

    Google Scholar 

  • Vavrinec, J. (2003). Resilience of green sea urchin (Strongylocentrotus droebachiensis) populations following fishing mortality: marine protected areas, larval ecology and post-settlement survival. Ph.D. dissertation, School of Marine Sciences, University of Maine, USA.

  • Voultsiadou, E., Dailianis, T., Antoniadou, C., Vafidis, D., Dounas, C., & Chintiroglou, C. C. (2011). Algean bath sponges: historical data and current status. Reviews in Fisheries Science, 19(1), 34–51.

    Google Scholar 

Download references

Acknowledgements

RAU was sponsored by GRANT MECESUP/MECE ANT0711 (Chile). FJ was supported by the National Research, Development and Innovation Office–NKFIH, Grants OTKA K 116071 and GINOP-2.3.2-15-2016-00057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ortiz.

Appendices

Appendix 1

Mean (X) ± standard deviation (SD) of species or groups collected from ceramic panels per cm2 and per immersion period at kelp forest.

figure a

Appendix 2

List of the taxa recorded at kelp forest during the experiment. Numbers are mean (X) and standard deviation (SD) per month.

figure b

Appendix 3

Mean (X) ± standard deviation (SD) of species or groups collected from ceramic panels per cm2 and per immersion period ay urchin barrens.

figure c

Appendix 4

List of the taxa recorded at urchin barren during the experiment. Numbers are mean (X) and standard deviation (SD) per month.

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uribe, R.A., Ortiz, M. & Jordán, F. Discrete steps of successional pathways differ in kelp forest and urchin barren communities. COMMUNITY ECOLOGY 22, 41–54 (2021). https://doi.org/10.1007/s42974-020-00035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-020-00035-2

Keywords

Navigation