Skip to main content
Log in

A Partially Random Trotter Algorithm for Quantum Hamiltonian Simulations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

Given the Hamiltonian, the evaluation of unitary operators has been at the heart of many quantum algorithms. Motivated by existing deterministic and random methods, we present a hybrid approach, where Hamiltonians with large amplitude are evaluated at each time step, while the remaining terms are evaluated at random. The bound for the mean square error is obtained, together with a concentration bound. The mean square error consists of a variance term and a bias term, arising, respectively, from the random sampling of the Hamiltonian terms and the operator-splitting error. Leveraging on the bias/variance trade-off, the error can be minimized by balancing the two. The concentration bound provides an estimate of the number of gates. The estimates are verified using numerical experiments on classical computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. An, D., Fang, D., Lin, L.: Time-dependent unbounded Hamiltonian simulation with vector norm scaling. Quantum 5, 459 (2021)

    Article  Google Scholar 

  2. Aspuru-Guzik, A.: Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005). https://doi.org/10.1126/science.1113479

    Article  Google Scholar 

  3. Babbush, R., McClean, J., Wecker, D., Aspuru-Guzik, A., Wiebe, N.: Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Phys. Rev. A 91(2), 022311 (2015)

    Article  Google Scholar 

  4. Babbush, R., Wiebe, N., McClean, J., McClain, J., Neven, H., Chan, K.L.: Low-depth quantum simulation of materials. Phys. Rev. X 8(1), 011044 (2018)

    Google Scholar 

  5. Baker, H.F.: Alternants and continuous groups. Proc. London Math. Soc. 2(1), 24–47 (1905)

    Article  MathSciNet  Google Scholar 

  6. Bravyi, S.B., Kitaev, A.Y.: Fermionic quantum computation. Ann. Phys. 298(1), 210–226 (2002)

    Article  MathSciNet  Google Scholar 

  7. Campbell, E.: Random compiler for fast Hamiltonian simulation. Phys. Rev. Lett. 123(7), 070503 (2019)

    Article  Google Scholar 

  8. Campbell, J.E.: On a law of combination of operators (second paper). Proc. London Math. Soc. 1(1), 14–32 (1897)

    Article  MathSciNet  Google Scholar 

  9. Chen, C.F., Huang, H.Y., Kueng, R., Tropp, J.A.: Quantum simulation via randomized product formulas: low gate complexity with accuracy guarantees. arXiv:2008.11751 (2020)

  10. Childs, A.M., Li, T.Y.: Efficient simulation of sparse Markovian quantum dynamics. arXiv:1611.05543 (2016)

  11. Childs, A.M., Ostrander, A., Su, Y.: Faster quantum simulation by randomization. Quantum 3, 182 (2019)

    Article  Google Scholar 

  12. Childs, A.M., Su, Y.: Nearly optimal lattice simulation by product formulas. Phys. Rev. Lett. 123(5), 050503 (2019)

    Article  MathSciNet  Google Scholar 

  13. Childs, A.M., Su, Y, Tran, M.C., Wiebe, N., Zhu, S.C.: Theory of Trotter error with commutator scaling. Phys. Rev. X 11(1), 011020 (2021)

    Google Scholar 

  14. Childs, A.M, Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. arXiv:1202.5822 (2012)

  15. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. London A 454, 339–354 (1998)

    Article  MathSciNet  Google Scholar 

  16. Cleve, R., Wang, C.H.: Efficient quantum algorithms for simulating lindblad evolution. arXiv:1612.09512 (2016)

  17. Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Differential Equations. Springer New York, NY (2012)

  18. Faehrmann, P.K., Steudtner, M., Kueng, R., Kieferova, M., Eisert, J.: Randomizing multi-product formulas for improved Hamiltonian simulation. arXiv:2101.07808 (2021)

  19. Feynman, R.P.: Quantum mechanical computers. Opt. News 11(2), 11–20 (1985)

    Article  Google Scholar 

  20. Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM Sigact Symposium on Theory of Computing, pp. 193–204 (2019)

  21. Gokhale, P., Angiuli, O., Ding, Y.S., Gui, K.W., Tomesh, T., Suchara, M., Martonosi, M., Chong, F.T.: Minimizing state preparations in variational quantum eigensolver by partitioning into commuting families. arXiv:1907.13623 (2019)

  22. Golse, F., Jin, S., Paul, T.: The random batch method for \(n\)-body quantum dynamics. arXiv:1912.07424 (2020)

  23. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for solving linear systems of equations. arXiv: 0811.3171 (2009)

  24. Hastings, M.B., Wecker, D., Bauer, B., Troyer, M.: Improving quantum algorithms for quantum chemistry. arXiv: 1403.1539 (2014)

  25. Hausdorff, F.: Die symbolische exponentialformel in der gruppentheorie. Ber. Verh. Kgl. SÃ chs. Ges. Wiss. Leipzig. Math.-phys. Kl. 58, 19–48 (1906)

  26. Havlíček, V., Troyer, M., Whitfield, J.D.: Operator locality in the quantum simulation of Fermionic models. Phys. Rev. A 95(3), 032332 (2017)

    Article  Google Scholar 

  27. Jin, S., Li, L: Random batch methods for classical and quantum interacting particle systems and statistical samplings. arXiv:2104.04337 (2021)

  28. Jin, S., Li, L., Liu, J.G..: Random batch methods (RBM) for interacting particle systems. J. Comput. Phys. 400, 108877 (2020)

    Article  MathSciNet  Google Scholar 

  29. Jin, S., Li, L., Liu, J.G.: Convergence of the random batch method for interacting particles with disparate species and weights. SIAM J. Num. Analys. 59(2), 746–768 (2021)

    Article  MathSciNet  Google Scholar 

  30. Jin, S., Li, L., Xu, Z.L., Zhao, Y.: A random batch Ewald method for particle systems with Coulomb interactions. SIAM. J. Sci. Comp. 43, B937–B960 (2021)

    Article  MathSciNet  Google Scholar 

  31. Jin, S., Li, X.T.: Random batch algorithms for quantum Monte Carlo simulations. Commun. Comput. Phys. 28(5), 1907–1936 (2020)

    Article  MathSciNet  Google Scholar 

  32. Jordan, P., Wigner, E.P.: About the Pauli exclusion principle. Z. Phys. 47(631), 14–75 (1928)

    Google Scholar 

  33. Kutin, S.: Extensions to McDiarmid’s inequality when differences are bounded with high probability. Dept. Comput. Sci., Univ. Chicago, Chicago, IL, USA, Tech. Rep. TR-2002-04 (2002)

  34. Li, L., Xu, Z.L., Zhao, Y.: A random-batch Monte Carlo method for many-body systems with singular kernels. SIAM J. Sci. Comput. 42(3), A1486–A1509 (2020)

    Article  MathSciNet  Google Scholar 

  35. McClean, J.: OpenFermion: the electronic structure package for quantum computers. Quant. Sci. Technol. 5, 034041 (2020)

    Google Scholar 

  36. McDiarmid, C.: On the method of bounded differences. Surv. Combin. 141(1), 148–188 (1989)

    MathSciNet  Google Scholar 

  37. McDiarmid, C., Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer-Verlag, Berlin (1998)

  38. Montanaro, A.: Quantum speedup of Monte Carlo methods. Proc. R. Soc. A 471(2181), 20150301 (2015)

    Article  MathSciNet  Google Scholar 

  39. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

  40. Ouyang, Y.K., White, D.R., Campbell, E.T.: Compilation by stochastic Hamiltonian sparsification. Quantum 4, 235 (2020)

    Article  Google Scholar 

  41. Poulin, D., Hastings, M.B, Wecker, D., Wiebe, N., Doherty, A.C, Troyer, M.: The Trotter step size required for accurate quantum simulation of quantum chemistry. arXiv:1406.4920 (2014)

  42. Qin, Y.M.: Integral and Discrete Inequalities and Their Applications. Springer International Publishing, Switzerland (2016)

  43. Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis: Methods and Case Studies. Springer International Publishing, New York (2002)

  44. Rio, E.: On McDiarmid’s concentration inequality. Electr. Commun. Prob. 18, 1–11 (2013)

    MathSciNet  Google Scholar 

  45. Seeley, J.T., Richard, M.J., Love, P.J.: The Bravyi-Kitaev transformation for quantum computation of electronic structure. J. Chem. Phys. 137(22), 224109 (2012)

    Article  Google Scholar 

  46. Sweke, R., Wilde, F., Meyer, J., Schuld, M., Fährmann, P.K., Meynard-Piganeau, B., Eisert, J.: Stochastic gradient descent for hybrid quantum-classical optimization. Quantum 4, 314 (2020)

    Article  Google Scholar 

  47. Tran, M.C., Guo, A.Y., Su, Y., Garrison, J.R., Eldredge, Z., Foss-Feig, M., Childs, A.M., Gorshkov, A.V.: Locality and digital quantum simulation of power-law interactions. Phys. Rev. X 9(3), 031006 (2019)

    Google Scholar 

  48. Tranter, A., Love, P.J., Mintert, F., Coveney, P.V.: A comparison of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation of quantum chemistry. J. Chem. Theory Comput. 14(11), 5617–5630 (2018)

    Article  Google Scholar 

  49. Tranter, A., Love, P.J., Mintert, F., Wiebe, N., Coveney, P.V.: Ordering of Trotterization: impact on errors in quantum simulation of electronic structure. Entropy 21(12), 1218 (2019)

    Article  MathSciNet  Google Scholar 

  50. Tropp, J.A: An introduction to matrix concentration inequalities. arXiv:1501.01571 (2015)

  51. Wecker, D., Bauer, B., Clark, B.K., Hastings, M.B., Troyer, M.: Gate count estimates for performing quantum chemistry on small quantum computers. arXiv: 1312.1695 (2014)

  52. Whitfield, J.D., Biamonte, J., Aspuru-Guzik, A.: Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys. 109(5), 735–750 (2011)

    Article  Google Scholar 

Download references

Funding

Jin’s research was supported by the NSFC (Grant No. 12031013) and the Innovation Program of Shanghai Municipal Education Commission (Nos. 2021-01-07-00-02-E00087). Li’s research has been supported by the NSF (Grant Nos. DMS-1953120 and DMS-2111221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiantao Li.

Ethics declarations

Compliance with Ethical Standards

The authors declare that they have no conflict of interest. This work does not contain any studies with human participants performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

In Memory of Professor Zhong-Ci Shi.

Appendices

Appendix A The Proof of Proposition 1

Proof

To estimate this one-step error, we separate it into two terms,

$$\left\{ \begin{aligned} \begin{aligned} {|{ \chi _1(\Delta t) }\rangle }=&\exp \big ( -{\text{i}} \Delta tH_1 - {\text{i}} \Delta t\delta H \big ) {|{\psi (0)}\rangle } - \exp \big ( -{\text{i}} \Delta tH_1 \big ) {|{\psi (0)}\rangle }, \\ {|{ \chi _2(\Delta t) }\rangle }=&\exp \big ( -{\text{i}} \Delta tH_0 \big ) \exp \big ( -{\text{i}} \Delta tH_1 \big ) {|{\psi (0)}\rangle } - \exp \big ( -{\text{i}} \Delta tH \big ) {|{\psi (0)}\rangle }. \end{aligned} \end{aligned} \right.$$
(A1)

As a result, we have the total one-step error

$$\begin{aligned} {|{\chi (\Delta t)}\rangle } = \exp \big ( -{\text{i}} \Delta tH_0 \big ) {|{\chi _1(\Delta t)}\rangle } + {|{\chi _2(\Delta t)}\rangle }. \end{aligned}$$
(A2)

Using the triangle inequality and the estimates from Theorems 1 and 3, we arrive at the stated estimate.

Appendix B The Proof of Theorem 3

Proof

We first extend the function \(|\chi \rangle\) to \(t\in [0,\Delta t]\),

$$\begin{aligned} {|{\chi (t)}\rangle } = \exp \big ( -{\text{i}} t H - {\text{i}} t \delta H \big ), {|{\psi (0)}\rangle } - \exp \big ( -{\text{i}} t H \big ) {|{ \psi (0)}\rangle }. \end{aligned}$$

It can be directly verified that \({|{\chi (t)}\rangle }\) satisfies the differential equation

$$\begin{aligned} \frac{\text{d}}{{\text{d}}t} {|{\chi (t)}\rangle } = -{\text{i}} (H+\delta H) {|{\chi (t)}\rangle } +{\text{i}} \delta H {|{\psi (t)}\rangle }. \end{aligned}$$
(B1)

Since \(\delta H\) is Hermitian, we have

$$\begin{aligned} \frac{\text{d}}{{\text{d}}t} {\langle { \chi (t)}\rangle } = {\text{i}} {\langle { \chi (t)}|} \delta H {|{\psi (t)}\rangle } - {\text{i}} {\langle { \psi (t)}|} \delta H {|{\chi (t)}\rangle }=2 \text {Im} {\langle {\psi (t)}|} \delta H {|{\chi (t)}\rangle }. \end{aligned}$$
(B2)

Therefore, using the Cauchy-Schwarz inequality, one has

$$\begin{aligned} \frac{\text{d}}{{\text{d}}t} {\langle { \chi (t)}\rangle } \leqslant 2 {\langle { \chi (t)}\rangle }^{1/2} {\langle {\psi (t)}|} \delta H^2 {|{\psi (t)}\rangle }^{1/2}. \end{aligned}$$

By direct integration, or using the Ou-Iang inequality [42], this inequality leads to the desired bound (33).

Appendix C Proof of Theorem 5

Proof

Following standard procedure for analyzing the accumulation of the error in time [17], we can derive an error equation, given by

$$\begin{aligned} |e_{n+1}\rangle = \exp \big ( -{\text{i}} \Delta tH_0 \big ) \exp \big ( -{\text{i}} \Delta tH_1 - {\text{i}} \Delta t\delta H_n \big ) |e_n\rangle + | \chi _n \rangle , \end{aligned}$$
(C1)

where

$$\begin{aligned} {|{\chi _n}\rangle } = \exp \big ( -{\text{i}} \Delta tH \big ) |\psi _{n} \rangle - \exp \big ( -{\text{i}} \Delta tH_0 \big ) \exp \big ( -{\text{i}} \Delta tH_1 - {\text{i}} \Delta t \delta H_n \big ) |\psi _n\rangle \end{aligned}$$
(C2)

can be interpreted as a one-step truncation error.

Estimating the \(L^2\)-error is quite straightforward, since,

$$\begin{aligned} \Vert e_{n+1} \Vert \leqslant \Vert e_{n} \Vert + \Vert \chi _{n} \Vert \Rightarrow \Vert e_n \Vert \leqslant \sum _{j=0}^{n-1} \Vert \chi _{n} \Vert .\end{aligned}$$

On the other hand, to connect to the MSE, one can start with (C1). Using the Cauchy-Schwarz inequality, one finds that

$$\begin{aligned} \langle e_{n+1} |e_{n+1}\rangle \leqslant \langle e_{n} |e_{n}\rangle + 2 \langle e_{n} |e_{n}\rangle ^{\frac{1}{2}} \langle \chi _n | \chi _n \rangle ^{\frac{1}{2}} + \langle \chi _n | \chi _n \rangle . \end{aligned}$$
(C3)

Using the inequality, \(2 \langle e_{n} |e_{n}\rangle ^{\frac{1}{2}} \leqslant 1 + \langle e_{n} |e_{n}\rangle ,\) we arrive at

$$\begin{aligned} \langle e_{n+1} |e_{n+1}\rangle \leqslant \langle e_{n} |e_{n}\rangle (1 + \langle \chi _n | \chi _n \rangle ^{\frac{1}{2}}) + \langle \chi _n | \chi _n \rangle . \end{aligned}$$
(C4)

A bound can be found using the following discrete Gronwall’s inequality [42][Theorem 2.1.3]:

$$\begin{aligned} u_{n+1} \leqslant (1+ g_n) u_n + f_n, \forall n \geqslant 0 \Rightarrow u_n \leqslant \sum _{m=0}^{n-1} f_m \prod _{j=m+1}^{n-1} (1+g_j). \end{aligned}$$
(C5)

As a result, we have

$$\begin{aligned} \langle e_{n+1} |e_{n+1}\rangle \leqslant \displaystyle \sum _{k=0}^n \langle \chi _k | \chi _k \rangle \exp \bigg ( \sum _{k=0}^n \langle \chi _k | \chi _k \rangle ^{\frac{1}{2}} \bigg ). \end{aligned}$$
(C6)

This can be combined with the one-step error bounds (51) (applied to the exponential) and (52).

Appendix D The Proof of Proposition 2

Proof

Recall that \({|{\psi (t)}\rangle }:= \exp \big ( -{\text{i}} t H \big ) {|{\psi (0)}\rangle }\) is the exact solution. We will split the error as follows:

$$\begin{aligned} \begin{aligned} \left\| {|{\psi _1}\rangle } - {\mathbb {E}}[{|{\phi _1}\rangle } ] \right\|& \leqslant \left\| {|{\psi (\Delta t)}\rangle } - \exp \big ( -{\text{i}} \Delta tH_0\big ) \exp \big ( - {\text{i}} \Delta tH_1 \big ) {|{\psi _0}\rangle } \right\| \\& \quad + \left\| \exp \big ( -{\text{i}} \Delta tH_0\big ) \exp \big ( - {\text{i}} \Delta tH_1 \big ) {|{\psi _0}\rangle } - {\mathbb {E}}[{|{\phi (\Delta t)}\rangle } ] \right\| . \end{aligned} \end{aligned}$$
(D1)

The first term can be estimated by (45) from Theorem 4. For the second term, it is enough to consider the difference, denoted by \({|{\theta (t)}\rangle },\) of the following wave functions:

$$\begin{aligned} {|{\theta (t)}\rangle } = \exp \big ( -{\text{i}} t H_1 \big ) |\psi _0\rangle - {\mathbb {E}}\left[ \exp \big ( -{\text{i}} t H_1 - {\text{i}} t \delta H \big )\right] |\psi _0\rangle . \end{aligned}$$
(D2)

Let \({|{\phi (t)}\rangle }= \big ( -{\text{i}} t H_1 - {\text{i}} t \delta H \big ) |\psi _0\rangle\), and notice that

$$\begin{aligned} \displaystyle \frac{\text{d}}{{\text{d}}t} {\mathbb {E}}[{|{\phi (\Delta t)}\rangle } ] = {\mathbb {E}}[ -{\text{i}} (H_1+\delta H) {|{\phi (\Delta t)}\rangle } ]. \end{aligned}$$

Therefore, the error term term \({|{\theta (t)}\rangle }\) satisfies the equation

$$\begin{aligned} \frac{\text{d}}{{\text{d}}t} {|{ \theta (t)}\rangle } = - {\text{i}} H_1 {|{\theta (t)}\rangle } - {\text{i}} {\mathbb {E}} [ \delta H {|{\phi (t)}\rangle }]. \end{aligned}$$
(D3)

Using the variation-of-constant formula, and using the fact that \({\mathbb {E}} [ \delta H]=0,\) we can write

$$\begin{aligned} \begin{aligned} {|{\theta (\Delta t)}\rangle } =&-{\text{i}} \int _0^{\Delta t} U_1(\Delta t-t) {\mathbb {E}} \left[ \delta H {|{\phi (t)}\rangle } \right] {\text{d}}t\\ =&-{\text{i}} \int _0^{\Delta t} U_1(\Delta t-t) {\mathbb {E}} \left[ \delta H ( {|{\phi (t)}\rangle } - {|{\phi (0)}\rangle } ) \right] {\text{d}}t\\ =&- \int _0^{\Delta t} U_1(\Delta t-t) {\mathbb {E}} \left[ \delta H (H_1 + \delta H) \int _0^t {|{\phi (\tau )}\rangle } {\text{d}}\tau \right] {\text{d}}t. \end{aligned} \end{aligned}$$

Here \(U_1(t)=\exp ( -{\text{i}} t H_1).\) In light of the fact that \(\Vert {|{\phi }\rangle }\Vert =1,\) one can take the norms and arrive at

$$\begin{aligned} \Vert {|{\chi (\Delta t)}\rangle } \Vert \leqslant \int _0^{\Delta t} \int _0^t {\mathbb {E}} \left[ \Vert \delta H (H_1 + \delta H)\Vert \right] ^{\frac{1}{2}} {\text{d}}\tau {\text{d}}t,\end{aligned}$$

which yields the second term in the estimate (59).

This estimate can be extended to time \(t=n\Delta t\) [9] using the fact that for a unitary matrix V, \(\Vert {\mathbb {E}}[V] \Vert \leqslant 1.\) More specifically, we can split the error as follows:

$$\begin{aligned} \begin{aligned} \left\| {|{\psi _n}\rangle } - {\mathbb {E}}[ {|{\phi _n}\rangle }] \right\|&\leqslant \left\| U(\Delta t) {|{\psi _{n-1}}\rangle } - {\mathbb {E}} [V_{n-1}] {|{\psi _{n-1}}\rangle } \right\| + \left\| {\mathbb {E}} [V_{n-1}] {|{\psi _{n-1}}\rangle } - {\mathbb {E}} [V_{n-1}] {\mathbb {E}}[ {|{\phi _{n-1}}\rangle } ] \right\| \\&\leqslant \left\| U(\Delta t) {|{\psi _{n-1}}\rangle } - {\mathbb {E}} [V_{n-1}] {|{\psi _{n-1}}\rangle } \right\| + \left\| {|{\psi _{n-1}}\rangle } - {\mathbb {E}}[ {|{\phi _{n-1}}\rangle } ] \right\| \\&\leqslant \cdots \\ \Longrightarrow \left\| {|{\psi _n}\rangle } - {\mathbb {E}}[ {|{\phi _n}\rangle }] \right\|&\leqslant \frac{t \Delta t}{2} \Vert [H_0,H_1]\Vert + \frac{t \Delta t}{2} {\mathbb {E}}\left[ \Vert (H_1+\delta H) \delta H^2 (H_1+\delta H) \Vert \right] ^{\frac{1}{2}}. \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Li, X. A Partially Random Trotter Algorithm for Quantum Hamiltonian Simulations. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-023-00336-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-023-00336-z

Keywords

Mathematics Subject Classification

Navigation