Skip to main content
Log in

Dimension by Dimension Finite Volume HWENO Method for Hyperbolic Conservation Laws

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we propose a finite volume Hermite weighted essentially non-oscillatory (HWENO) method based on the dimension by dimension framework to solve hyperbolic conservation laws. It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears, and it is compact which will be good for giving the numerical boundary conditions. Furthermore, it avoids complicated least square procedure when we implement the genuine two dimensional (2D) finite volume HWENO reconstruction, and it can be regarded as a generalization of the one dimensional (1D) HWENO method. Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balsara, D.S., Altmann, C., Munz, C.-D., Dumbser, M.: A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG plus HWENO schemes. J. Comput. Phys. 226(1), 586–620 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Capdeville, G.: A Hermite upwind WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 227(4), 2430–2454 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Casper, J., Atkins, H.L.: A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems. J. Comput. Phys. 106(1), 62–76 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ha, Y., Gardner, C.L., Gelb, A., Shu, C.-W.: Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput. 24(1), 597–612 (2005)

    Article  MathSciNet  Google Scholar 

  7. Hu, C.Q., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Hu, X.Y., Khoo, B.C.: An interface interaction method for compressible multifluids. J. Comput. Phys. 198(1), 35–64 (2004)

    Article  ADS  Google Scholar 

  9. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)

    Article  MathSciNet  Google Scholar 

  10. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. Krivodonova, L., Xin, J., Remacle, J.F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48(3), 323–338 (2004)

    Article  MathSciNet  Google Scholar 

  12. Lax, P.D., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  Google Scholar 

  13. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for conservation laws, II: an alternative approach. J. Sci. Comput. 66(2), 598–624 (2016)

    Article  MathSciNet  Google Scholar 

  14. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  15. Liu, Y., Zhang, Y.-T.: A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54(2/3), 603–621 (2013)

    Article  MathSciNet  Google Scholar 

  16. Luo, D., Huang, W., Qiu, J.: A hybrid LDG-HWENO scheme for KdV-type equations. J. Comput. Phys. 313, 754–774 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193(1), 115–135 (2004)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two-dimensional case. Comput. Fluids 34(6), 642–663 (2005)

    Article  MathSciNet  Google Scholar 

  19. Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175(1), 108–127 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta. Numer. 29, 701–762 (2020)

    Article  MathSciNet  Google Scholar 

  21. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Tao, Z., Li, F., Qiu, J.: High-order central Hermite WENO schemes: dimension-by-dimension moment-based reconstructions. J. Comput. Phys. 318, 222–251 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238–260 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wang, C., Shu, C.-W., Han, W., Ning, J.: High resolution WENO simulation of 3D detonation waves. Combust. Flame 160(2), 447–462 (2013)

    Article  ADS  CAS  Google Scholar 

  25. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wu, K., Tang, H.: High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics. J. Comput. Phys. 298, 539–564 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Wu, K., Yang, Z., Tang, H.: A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics. J. Comput. Phys. 264(1), 177–208 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. Xing, Y.L., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208(1), 206–227 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Xiong, T., Zhang, M., Zhang, Y.-T., Shu, C.-W.: Fast sweeping fifth order WENO scheme for static Hamilton-Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45(1/2/3), 514–536 (2010)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Y.-T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes. Communicat. Comput. Phys. 5(2/3/4), 836–848 (2009)

    MathSciNet  Google Scholar 

  31. Zhao, Z., Qiu, J.: A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws. J. Comput. Phys. 417, 109583 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zheng, F., Qiu, J.: Directly solving the Hamilton-Jacobi equations by Hermite WENO schemes. J. Comput. Phys. 307, 423–445 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Zhu, J., Qiu, J.: A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes. Sci. China Ser. A 51(08), 1549–1560 (2008)

    Article  MathSciNet  Google Scholar 

  34. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73(2/3), 1338–1359 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ph.D. candidate Jiayin Li in Xiamen University and anonymous referees for their comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Ethics declarations

Conflict of Interest

Jianxian Qiu is an editorial board member for Communications on Applied Mathematics and Computation and was not involved in the editorial review or the decision to publish this article. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The research of Feng Zheng is partially supported by the NSFC grant 12101128.

The research of Jianxian Qiu is partially supported by the NSFC grant 12071392.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Qiu, J. Dimension by Dimension Finite Volume HWENO Method for Hyperbolic Conservation Laws. Commun. Appl. Math. Comput. 6, 605–624 (2024). https://doi.org/10.1007/s42967-023-00279-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-023-00279-5

Keywords

Mathematics Subject Classification

Navigation