Skip to main content
Log in

Efficient Sparse-Grid Implementation of a Fifth-Order Multi-resolution WENO Scheme for Hyperbolic Equations

  • Technical Note
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

High-order accurate weighted essentially non-oscillatory (WENO) schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations (PDEs). Due to highly nonlinear property of the WENO algorithm, large amount of computational costs are required for solving multidimensional problems. In our previous work (Lu et al. in Pure Appl Math Q 14: 57–86, 2018; Zhu and Zhang in J Sci Comput 87: 44, 2021), sparse-grid techniques were applied to the classical finite difference WENO schemes in solving multidimensional hyperbolic equations, and it was shown that significant CPU times were saved, while both accuracy and stability of the classical WENO schemes were maintained for computations on sparse grids. In this technical note, we apply the approach to recently developed finite difference multi-resolution WENO scheme specifically the fifth-order scheme, which has very interesting properties such as its simplicity in linear weights’ construction over a classical WENO scheme. Numerical experiments on solving high dimensional hyperbolic equations including Vlasov based kinetic problems are performed to demonstrate that the sparse-grid computations achieve large savings of CPU times, and at the same time preserve comparable accuracy and resolution with those on corresponding regular single grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alves, M.A., Cruz, P., Mendes, A., Magalhães, F.D., Pinho, F.T., Oliveira, P.J.: Adaptive multiresolution approach for solution of hyperbolic PDEs. Comput. Methods Appl. Mech. Eng. 191, 3909–3928 (2002)

    Article  MATH  Google Scholar 

  2. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227, 2977–3014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carrillo, J.A., Gamba, I.M., Majorana, A., Shu, C.-W.: A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Don, W.-S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dumbser, M., Käser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226, 204–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: Beauwens, R., de Groen, P. (eds) Iterative Methods in Linear Algebra, pp. 263–281. North-Holland, Amsterdam (1992)

    Google Scholar 

  10. Guo, W., Cheng, Y.: A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. SIAM J. Sci. Comput. 38, A3381–A3409 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, W., Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions. SIAM J. Sci. Comput. 39, A2962–A2992 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henrick, A., Aslam, T., Powers, J.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  13. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kolb, O.: A third order hierarchical basis WENO interpolation for sparse grids with application to conservation laws with uncertain data. J. Sci. Comput. 74, 1480–1503 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lastdrager, B., Koren, B., Verwer, J.: Solution of time-dependent advection-diffusion problems with the sparse-grid combination technique and a rosenbrock solver. Comput. Methods Appl. Math. 1, 86–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-dependent advection problems. Appl. Numer. Math. 38, 377–401 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. Math. Model. Numer. Anal. 33, 547–571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, L., Zhu, J., Zhang, Y.-T.: Absolutely convergent fixed-point fast sweeping WENO methods for steady state of hyperbolic conservation laws. J. Comput. Phys. 443, 110516 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Y., Cheng, Y., Shu, C.-W.: A simple bound-preserving sweeping technique for conservative numerical approximations. J. Sci. Comput. 73, 1028–1071 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Y., Zhang, Y.-T.: A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54, 603–621 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, D., Chen, S., Zhang, Y.-T.: Third order WENO scheme on sparse grids for hyperbolic equations. Pure Appl. Math. Q. 14, 57–86 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, D., Zhang, Y.-T.: Krylov integration factor method on sparse grids for high spatial dimension convection-diffusion equations. J. Sci. Comput. 69, 736–763 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130–1149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E.(eds) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, Volume 1697. Springer (1998)

  26. Tao, Z., Guo, W., Cheng, Y.: Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system. J. Comput. Phys. X 3, 100022 (2019)

    MathSciNet  Google Scholar 

  27. Yamaleev, N., Carpenter, M.: A systematic methodology for constructing high-order energy stable WENO schemes. J. Comput. Phys. 228, 4248–4272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zenger, C.: Sparse grids. In: Hackbusch, W. (ed) Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Braunschweig (1991)

    Google Scholar 

  29. Zhang, S., Jiang, S., Zhang, Y.-T., Shu, C.-W.: The mechanism of sound generation in the interaction between a shock wave and two counter rotating vortices. Phys. Fluids 21, 076101 (2009)

    Article  MATH  Google Scholar 

  30. Zhang, Y.-T., Shu, C.-W.: High order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y.-T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, Y.-T., Shu, C.-W., Zhou, Y.: Effects of shock waves on Rayleigh-Taylor instability. Phys. Plasmas 13, 062705 (2006)

    Article  MathSciNet  Google Scholar 

  33. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, J., Shu, C.-W.: A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes. J. Comput. Phys. 406, 109212 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu, J., Shu, C.-W.: Convergence to steady-state solutions of the new type of high-order multi-resolution WENO schemes: a numerical study. Commun. Appl. Math. Comput. 2, 429–460 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, X., Zhang, Y.-T.: Fast sparse grid simulations of fifth order WENO scheme for high dimensional hyperbolic PDEs. J. Sci. Comput. 87, 44 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Tao Zhang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Research was partially supported by NSF Grant DMS-1620108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsybulnik, E., Zhu, X. & Zhang, YT. Efficient Sparse-Grid Implementation of a Fifth-Order Multi-resolution WENO Scheme for Hyperbolic Equations. Commun. Appl. Math. Comput. 5, 1339–1364 (2023). https://doi.org/10.1007/s42967-022-00202-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-022-00202-4

Keywords

Mathematics Subject Classification

Navigation