Skip to main content
Log in

Bayesian algorithm based on auxiliary variables for estimating item response theory models with non-ignorable missing response data

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

Missing responses generally exist in educational and psychological assessments. The statistical inference will lead to serious deviation if the missing responses are not properly modeled in the framework of non-ignorable missing mechanism. In this current study, it is studied whether the different missing mechanism (ignorable missing and non-ignorable missing) models are appropriate to analyze the missing response data from the perspective of parameter estimation and model assessment. In addition, a highly effective Bayesian sampling algorithm based on auxiliary variables is used to estimate the complex models. Compared with the traditional marginal likelihood method and other Bayesian algorithms, the advantages of the new algorithm are discussed in detail. Based on the Markov Chain Monte carlo samples from the posterior distributions, the deviance information criterion (DIC) and the logarithm of the pseudomarignal likelihood (LPML) are employed to compare the different missing mechanism models. Four simulation studies are conducted and a detailed analysis of PISA science data is carried out to further illustrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerman, T. A. (1996a). Developments in multidimensional item response theory. Applied Psychological Measurement, 20, 309–310.

    Article  Google Scholar 

  • Ackerman, T. A. (1996b). Graphical representation of multidimensional item response theory analyses. Applied Psychological Measurement, 20, 311–329.

    Article  Google Scholar 

  • Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251–269.

    Article  Google Scholar 

  • Asparouhov, T., & Muthén, B. (2010). Bayesian analysis of latent variable models using Mplus (Technical report, Version 4). Retrieved from http://www.statmodel.com.

  • Béguin, A. A., & Glas, C. A. W. (2001). MCMC estimation of multidimensional IRT models. Psychometrika, 66, 541–561.

    Article  MathSciNet  MATH  Google Scholar 

  • Bishop, C. M. (2006). Slice sampling. Pattern Recognition and Machine Learning. New York: Springer.

    MATH  Google Scholar 

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical Theories of Mental Test Scores (pp. 397–479). Reading: MIT Press.

    Google Scholar 

  • Blossfeld, H.-P., Ro$\beta $bach, H.-G., & von Maurice, J. (2011). Education as a lifelong process—The German national educational panel study (NEPS) [Special issue]. In Zeitschrift für Erziehungswissenschaft , 14. Wiesbaden: Springer VS.

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.

    Article  MathSciNet  Google Scholar 

  • Bock, R. D., & Schilling, S. G. (1997). High-dimensional full-information item factor analysis. In M. Berkane (Ed.), Latent variable modelling and applications to causality (pp. 164–176). New York: Springer.

    Google Scholar 

  • Brooks, S. P., & Gelman, A. (1998). Alternative methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434–455.

    MathSciNet  Google Scholar 

  • Chen, M.-H., Shao, Q.-M., & Ibrahim, J. G. (2000). Monte Carlo methods in Bayesian computation. New York: Springer.

    Book  MATH  Google Scholar 

  • Chib, S., & Greenberg, E. (1995). Understanding the Metropolis–Hastings algorithm. The American Statistician, 49, 327–335.

    Google Scholar 

  • Culpepper, S. A. (2016). Revisiting the 4-parameter item response model: Bayesian estimation and application. Psychometrika, 81, 1142–1163.

    Article  MathSciNet  MATH  Google Scholar 

  • Damien, P., Wakefield, J., & Walker, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by auxiliary variables. Journal of the Royal Statistical Society Series B, 61, 331–344.

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle, P. J., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Fox, J. P. (2005). Multilevel IRT using dichotomous and polytomous items. The British Journal of Mathematical and Statistical Psychology, 58, 145–172.

    Article  MathSciNet  Google Scholar 

  • Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. New York: Springer.

    Book  MATH  Google Scholar 

  • Fox, J.-P., & Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 269–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Geisser, S., & Eddy, W. F. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E., Dey, D. K., & Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods (with discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics 4 (pp. 147–167). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.

    Article  MATH  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  MATH  Google Scholar 

  • Glas, C. A. W., & Pimentel, J. L. (2008). Modeling nonignorable missing data in speeded tests. Educational and Psychological Measurement, 68, 907–922.

    Article  MathSciNet  Google Scholar 

  • Glas, C. A. W., Pimentel, J. L., & Lamers, M. A. (2015). Nonignorable data in IRT mdoels: Polytomous response and response propensity models with covariates. Psychological Test and Assessment Modeling, 57, 523–541.

    Google Scholar 

  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. The Annals of Economic and Social Measurement, 5, 475–492.

    Google Scholar 

  • Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47, 153–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Holman, R., & Glas, C. A. W. (2005). Modelling non-ignorable missing-data mechanisms with item response theory models. British Journal of Mathematical and Statistical Psychology, 58, 1–17.

    Article  MathSciNet  Google Scholar 

  • Huisman, M. (2000). Imputation of missing item responses: Some simple techniques. Quality and Quantity, 34, 331–351.

    Article  Google Scholar 

  • Ibrahim, J. G., Chen, M.-H., & Sinha, D. (2001). Bayesian survival analysis. New York: Springer.

    Book  MATH  Google Scholar 

  • Jackman, S. (2009). Bayesian analysis for the social sciences. Chichester: Wiley.

    Book  MATH  Google Scholar 

  • Korobko, O. K., Glas, C. A. W., Bosker, R. J., & Luyten, J. W. (2008). Comparing the difficulty of examination subjects with item response theory. Journal of Educational Measurement, 45, 137–155.

    Article  Google Scholar 

  • Kuk, A. Y. C. (1999). Laplace importance sampling for generalized linear mixed models. Journal of Statistical Computation and Simulation, 63, 143–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S.-Y., & Song, X.-Y. (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39, 653–686.

    Article  Google Scholar 

  • Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88, 125–134.

    MATH  Google Scholar 

  • Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New York: Wiley.

    Book  MATH  Google Scholar 

  • Lord, F. M. (1974). Estimation of latent ability and item parameters when there are omitted responses. Psychometrika, 39, 247–264.

    Article  MATH  Google Scholar 

  • Lord, F. M. (1980). Applications of item response theory to practical testing scores. Reading: Addison-Wesley.

    Google Scholar 

  • Lord, F. M. (1983). Maximum likelihood estimation of item response parameters when some responses are omitted. Psychometrika, 48, 477–482.

    Article  MATH  Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Lu, J., Zhang, J. W., & Tao, J. (2018). Slice–Gibbs sampling algorithm for estimating the parameters of a multilevel item response model. Journal of Mathematical Psychology, 82, 12–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Ludlow, L. H., & O’Leary, M. (1999). Scoring omitted and not-reached items: Practical data analysis implications. Educational and Psychological Measurement, 59, 615–630.

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.

    Article  MATH  Google Scholar 

  • Mislevy, R. J., & Chang, H. H. (2000). Does adaptive testing violate local independence? Psychometrika, 65, 149–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Mislevy, R. J., & Wu, P. K. (1996). Missing responses and IRT ability estimation: Omits, choice, time limits, and adaptive testing. Research Report No. RR-96-30. Princeton: Educational Testing Service.

  • Moustaki, I., & Knott, M. (2000). Weighting for item non-response in attitude scales by using latent variable models with covariates. Journal of the Royal Statistical Society Series A, 163, 445–459.

    Article  Google Scholar 

  • Muthén, B. O. (2010). Bayesian analysis in Mplus: A brief introduction (Incomplete draft,Version 3). http://www.statmodel.com/download/IntroBayesVersion%203.pdf

  • Neal, R. (2003). Slice sampling. The Annals of Statistics, 31, 705–767.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Muircheartaigh, C., & Moustaki, I. (1999). Symmetric pattern models: A latent variable approach to item non-response in attitudes scales. Journal of the Royal Statistic Society, 162, 177–194.

    Article  Google Scholar 

  • Patz, R. J., & Junker, B. W. (1999a). A straight forward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146–178.

    Article  Google Scholar 

  • Pohl, S., Gräfe, L., & Rose, N. (2014). Dealing with omitted and not-reached items in competence tests: Evaluating approaches accounting for missing responses in item response theory models. Educational and Psychological Measurement, 74, 423–452.

    Article  Google Scholar 

  • Pohl, S., Haberkorn, K., Hardt, K., & Wiegand, E. (2012). NEPS technical report for reading? Scaling results of starting cohort 3 in fifth grade. NEPS Working Paper No. 15. Bamberg: Otto-Friedrich-Universitt, Nationales Bildungspanel.

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2, 1–21.

    Article  MATH  Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. Applied Psychological Measurement, 9, 401–412.

    Article  Google Scholar 

  • Reckase, M. D. (1997). A linear logistic multidimensional model for dichotomous item response data. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory. New York: Springer.

    Google Scholar 

  • Rose, N. (2013). Item nonresponses in educational and psychological measurement. Doctoral Thesis, Friedrich-Schiller University, Jena.

  • Rose, N., von Davier, M., & Nagengast, B. (2017). Modeling omitted and not-reached items in IRT models. Psychometrika, 82, 795–819.

    Article  MathSciNet  MATH  Google Scholar 

  • Rose, N., von Davier, M., & Xu, X. (2010). Modeling nonignorable missing data with IRT. Research Report No. RR-10-11. Princeton, NJ: Educational Testing Service.

  • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.

    Article  MathSciNet  MATH  Google Scholar 

  • Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147–177.

    Article  Google Scholar 

  • Skaug, H. J. (2002). Automatic differentiation to facilitate maximum likelihood estimation in nonlinear random effects models. Journal of Computational and Graphical Statistics, 11, 458–470.

    Article  MathSciNet  Google Scholar 

  • Song, X.-Y., & Lee, S.-Y. (2012). A tutorial on the Bayesian approach for analyzing structural equation models. Journal of Mathematical Psychology, 56, 135–148.

    Article  MathSciNet  MATH  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 583–639.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82, 528–550.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussions). The Annals of Statistics, 22, 1701–1762.

    MathSciNet  MATH  Google Scholar 

  • Zhang, J. W., Lu, J., Chen, F., & Tao, J. (2018). Exploring the correlations between multiple latent variables and covariates based on a multilevel multidimensional item response model. Frontiers in Psychology, 10, 2387.

    Article  Google Scholar 

  • Zhang, Z., Hamagami, F., Wang, L., Grimm, K. J., & Nesselroade, J. R. (2007). Bayesian analysis of longitudinal data using growth curve models. International Journal of Behavioral Development, 31, 374–383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyuan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Z. & Tao, J. Bayesian algorithm based on auxiliary variables for estimating item response theory models with non-ignorable missing response data. J. Korean Stat. Soc. 50, 955–996 (2021). https://doi.org/10.1007/s42952-020-00100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-020-00100-6

Keywords

Navigation