Skip to main content
Log in

Explicit formulae and implication of the expected values of some nonlinear statistics of tri-variate Gaussian variables

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

We obtain explicit formulae for the expected values \(E \{ \prod \nolimits _{i=1}^{3}g_i ( X_i ) \}\) of standard tri-variate Gaussian random vector \({\underline{X}}= \left( X_1, X_2 , X_3 \right) \) over the set \(g_i (x) \in \left\{ \delta (x), \mathrm {sgn}(x), |x|, x \right\} \) of nonlinear and linear functions. Based on the results, we also suggest corrections to long-known formulae for two incomplete moments. Applications of the formulae in practical examples are also illustrated concisely. For easy reference for the readers, the explicit formulae derived in this paper and related well-known results are summarized in tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed, Q. Z., Yang, L.-L., & Chen, S. (2011). Reduced-rank adaptive least bit-error-rate detection in hybrid direct-sequence time-hopping ultrawide bandwidth systems. IEEE Transactions on Vehicular Technology, 60, 849–857.

    Article  Google Scholar 

  • An, T., Song, I., Lee, S., & Min, H.-K. (2014). Detection of signals with observations in multiple subbands: A scheme of wideband spectrum sensing for cognitive radio with multiple antennas. IEEE Transactions on Wireless Communications, 13, 6968–6981.

    Article  Google Scholar 

  • Bär, W., & Dittrich, F. (1971). Useful formula for moment computation of normal random variables with nonzero means. IEEE Transactions on Automatic Control, 16, 263–265.

    Article  Google Scholar 

  • Clegg, B. (1993). Underground cable fault location. New York: McGraw Hill.

    Google Scholar 

  • Conte, E., De Maio, A., & Galdi, C. (2003). CFAR detection of multidimensional signals: An invariant approach. IEEE Transactions on Signal Processing, 51, 142–151.

    Article  MathSciNet  Google Scholar 

  • Du, C., Thompson, J. S., & Petillot, Y. (2008). Predicted detection performance of MIMO radar. IEEE Signal Processing Letters, 15, 83–86.

    Article  Google Scholar 

  • Hajek, J. (1969). Nonparametric statistics. San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Hajek, J., Sidak, Z., & Sen, P. K. (1999). Theory of rank tests (2nd ed.). New York: Academic.

    MATH  Google Scholar 

  • Haldane, J. B. S. (1942). Moments of the distributions of powers and products of normal variates. Biometrika, 32, 226–242.

    Article  MathSciNet  Google Scholar 

  • Han, J. J., & Park, S. R. (2014). Performance comparison and improvement of STDR/SSTDR schemes using various sequences. Journal of Korea Information and Communications Society, 39, 637–644.

    Google Scholar 

  • Han, J. J., Park, S. R., & Noh, S. (2015). Improvement of detection performance in STDR/SSTDR using sign detector. Electronics Letters, 51, 1281–1282.

    Article  Google Scholar 

  • Holmquist, B. (1988). Moments and cumulants of the multivariate normal distribution. Stochastic Analysis and Applications, 6, 273–278.

    Article  MathSciNet  Google Scholar 

  • Isserlis, L. (1918). On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika, 12, 134–139.

    Article  Google Scholar 

  • Johnson, N. L., & Kotz, S. (1972). Distributions in statistics: Continuous multivariate distributions. New York: Wiley.

    MATH  Google Scholar 

  • Kamat, A. R. (1953). Incomplete and absolute moments of the multivariate normal distribution with some applications. Biometrika, 40, 20–34.

    Article  MathSciNet  Google Scholar 

  • Kamat, A. R. (1958). Incomplete moments of the trivariate normal distribution. Indian Journal of Statistics, 20, 321–322.

    MathSciNet  MATH  Google Scholar 

  • Kan, R. (2008). From moments of sum to moments of product. Journal of Multivariate Analysis, 99, 542–554.

    Article  MathSciNet  Google Scholar 

  • Kanwal, R. P. (2004). Generalized functions: Theory and applications. Boston: Birkhauser.

    Book  Google Scholar 

  • Kassam, S. A. (1988). Signal detection in non-Gaussian noise. New York: Springer.

    Book  Google Scholar 

  • Kendall, M. (1941). Proof of relations connected with the tetrachoric series and its generalization. Biometrika, 32, 196–198.

    MathSciNet  MATH  Google Scholar 

  • Kenefic, R. J. (1979). detection and MMSE estimation of nonlinear memoryless functionals of random processes using the volterra functional expansion. Ph.D. Dissertation, Syracuse University, Syracuse, NY.

  • Kenefic, R. J., & Weiner, D. D. (1985). Application of the Volterra functional expansion in the detection of nonlinear functions of Gaussian processes. IEEE Transactions on Communications, 33, 276–279.

    Article  Google Scholar 

  • Lunden, J., Kassam, S. A., & Koivunen, V. (2010). Robust nonparametric cyclic correlation-based spectrum sensing for cognitive radio. IEEE Transactions on Signal Processing, 58, 38–52.

    Article  MathSciNet  Google Scholar 

  • Miller, K. S. (1964). Multidimensional Gaussian distributions. New York: Wiley.

    MATH  Google Scholar 

  • Moran, P. (1948). Rank correlation and product–moment correlation. Biometrika, 35, 203–206.

    Article  MathSciNet  Google Scholar 

  • Nabeya, S. (1952). Absolute moments in 3-dimensional normal distribution. Annals of the Institute of Statistical Mathematics, 4, 15–30.

    Article  MathSciNet  Google Scholar 

  • Nadeem, Q.-U.-A., Kammoun, A., Debbah, M., & Alouini, M.-S. (2015). 3D massive MIMO systems: Modeling and performance analysis. IEEE Transactions on Wireless Communications, 14, 6926–6939.

    Article  Google Scholar 

  • Patel, J. K., & Read, C. B. (1996). Handbook of the normal distribution (2nd ed.). New York: Marcel Dekker.

    MATH  Google Scholar 

  • Poor, H. V., & Thomas, J. B. (1993). Advances in statistical signal processing, Vol. 2. Signal detection. Greenwich: JAI Press.

    Google Scholar 

  • Price, R. (1958). A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions on Information Theory, 4, 69–72.

    Article  MathSciNet  Google Scholar 

  • Smith, P., Furse, C., & Gunther, J. (2005). Analysis of spread spectrum time domain reflectometry for wire fault location. IEEE Sensors Journal, 5, 1649–1678.

    Article  Google Scholar 

  • Song, I., Bae, J., & Kim, S. Y. (2002). Advanced theory of signal detection. Berlin: Springer.

    Book  Google Scholar 

  • Song, I., & Kassam, S. A. (1992). Locally optimum rank detection of correlated random signals in additive noise. IEEE Transactions on Information Theory, 38, 1311–1322.

    Article  Google Scholar 

  • Song, I., & Lee, S. (2015). Explicit formulae for product moments of multi-variate Gaussian random variables. Statistics and Probability Letters, 100, 27–34.

    Article  MathSciNet  Google Scholar 

  • Tan, P. H., & Rasmussen, L. K. (2006). Asymptotically optimal nonlinear MMSE multiuser detection based on multivariate Gaussian approximation. IEEE Transactions on Communications, 54, 1427–1438.

    Article  Google Scholar 

  • Withers, C. S. (1985). The moments of the multivariate normal. Bulletin of the Australian Mathematical Society, 32, 103–107.

    Article  MathSciNet  Google Scholar 

  • Zhang, J., & Blum, R. S. (2014). Asymptotically optimal truncated multivariate Gaussian hypothesis testing with application to consensus algorithms. IEEE Transactions on Signal Processing, 62, 431–442.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea under Grant NRF-2018R1A2A1A05023192 and by the 2018 Research Fund of The Catholic University of Korea, for which the authors wish to express their thanks. The authors would also like to thank the Editor in Chief, Associate Editor, and two anonymous reviewers for their constructive suggestions and helpful comments in the reviewing rounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Ryoung Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of lemma and theorems

Appendix: Proof of lemma and theorems

Proof of Lemma 1

Noting that

$$\begin{aligned} f_3 (0 , 0, z)= & {} f_3 (0 , 0, 0) \exp \left\{ -\frac{ \left( 1- \rho _{12}^2 \right) }{2 \left| K_3 \right| } z^2\right\} \end{aligned}$$
(52)

and

$$\begin{aligned}&f_3 (0 , y, z) = f_3 (0 , 0, 0) \exp \left\{ - \frac{1}{2} (0 \ y \ z ) K_3^{-1}(0 \ y \ z )^T \right\} \nonumber \\&\quad = \ f_3 (0 , 0, 0) \exp \left\{ -\frac{1}{2 \left( 1- \beta _{23,1}^2 \right) } \left( \frac{y^2}{ 1- \rho _{12}^2 } - \frac{2 \beta _{23,1} yz}{\alpha _{23,1}} + \frac{z^2}{1- \rho _{31}^2 } \right) \right\} , \nonumber \\ \end{aligned}$$
(53)

Lemma 1 is immediately proved, where \(\alpha _{ij,k} = \sqrt{ ( 1- \rho _{jk}^2 ) ( 1-\rho _{ki}^2 )}\) for \((i,j,k) \in \{(1, 2, 3), (2, 3, 1), (3, 1, 2)\}\). \(\square \)

Proof of Theorem 1

It is straightforward to have

$$\begin{aligned} E\left\{ \delta \left( X_1 \right) \delta \left( X_2 \right) \left| X_3 \right| \right\}= & {} \frac{1}{ 2\pi \sqrt{ 1-\rho _{12}^2} }E \left\{ \left| \frac{\sqrt{\left| K_3 \right| }}{ \sqrt{1-\rho _{12}^2}} U \right| \right\} \nonumber \\= & {} \ \frac{ \sqrt{\left| K_3 \right| }}{ 2\pi \left( 1-\rho _{12}^2 \right) }E \{ | U | \} = \frac{ \sqrt{\left| K_3 \right| } }{\sqrt{2 \pi ^3} \left( 1-\rho _{12}^2 \right) } \end{aligned}$$
(54)

using (6) and

$$\begin{aligned} E\left\{ \delta \left( X_1 \right) X_2 X_3 \right\}= & {} \frac{1}{\sqrt{2\pi } } E \left\{ \sqrt{1-\rho _{12}^2} V_1 \sqrt{1-\rho _{31}^2} V_2 \right\} \nonumber \\= & {} \ \frac{\sqrt{1-\rho _{12}^2} \sqrt{1-\rho _{31}^2}}{\sqrt{2\pi } } \beta _{23,1} = \frac{ \rho _{23}-\rho _{31}\rho _{12} }{\sqrt{2\pi } } \end{aligned}$$
(55)

using (7). Again using (7), we get

$$\begin{aligned} E\left\{ \delta \left( X_1 \right) \mathrm {sgn}\left( X_2 \right) X_3 \right\}= & {} \frac{1}{\sqrt{2\pi } } E \left\{ \mathrm {sgn}\left( \sqrt{1-\rho _{12}^2} V_1 \right) \sqrt{1-\rho _{31}^2} V_2 \right\} \nonumber \\= & {} \ \frac{\sqrt{1-\rho _{31}^2}}{\sqrt{2\pi } } E \left\{ V_2 \mathrm {sgn}( V_1 ) \right\} = \frac{\sqrt{1-\rho _{31}^2}}{\sqrt{2\pi } } \sqrt{\frac{2}{\pi }}\beta _{23,1} \nonumber \\= & {} \ \frac{\rho _{23}-\rho _{31}\rho _{12} }{\pi \sqrt{1-\rho _{12}^2} }, \end{aligned}$$
(56)
$$\begin{aligned} E\left\{ \delta \left( X_1 \right) \mathrm {sgn}\left( X_2 \right) \mathrm {sgn}\left( X_3 \right) \right\}= & {} \frac{1}{\sqrt{2\pi } } E \left\{ \mathrm {sgn}\left( \sqrt{1-\rho _{12}^2} V_1 \right) \mathrm {sgn}\left( \sqrt{1-\rho _{31}^2} V_2 \right) \right\} \nonumber \\= & {} \ \frac{1}{\sqrt{2\pi } } E \left\{ \mathrm {sgn}\left( V_1 \right) \mathrm {sgn}\left( V_2 \right) \right\} = \sqrt{ \frac{2}{\pi ^3}} \sin ^{-1} \beta _{23,1},\nonumber \\ \end{aligned}$$
(57)

and

$$\begin{aligned} E\left\{ \delta \left( X_1 \right) \left| X_2 \right| \left| X_3 \right| \right\}= & {} \frac{1}{\sqrt{2\pi } } E \left\{ \left| \sqrt{1-\rho _{12}^2} V_1 \sqrt{1-\rho _{31}^2} V_2 \right| \right\} \nonumber \\= & {} \ \frac{\alpha _{23,1}}{\sqrt{2\pi } } \frac{2}{\pi } \left( \beta _{23,1} \sin ^{-1} \beta _{23,1} + \sqrt{1-\beta _{23,1}^2} \right) \nonumber \\= & {} \ \sqrt{ \frac{2}{\pi ^3 } } \left\{ \sqrt{ \left| K_3 \right| } + \left( \rho _{23}-\rho _{31}\rho _{12} \right) \sin ^{-1} \beta _{23,1} \right\} , \end{aligned}$$
(58)

which complete the proof. \(\square \)

Proof of Theorem 2: Eqs. (14) and (15)

From the theorem in Price (1958), by letting \({\tilde{\Upsilon }} = E \{ X_1 X_2 | X_3 | \}\), we have \(\frac{\partial }{\partial \rho _{12} } {\tilde{\Upsilon }} = E \{ | X_3 |\} = \sqrt{\frac{2}{\pi }}\), \(\frac{\partial }{\partial \rho _{23} } {\tilde{\Upsilon }} = E \{ X_1 \mathrm {sgn}( X_3 ) \} = \sqrt{\frac{2}{\pi }} \rho _{31}\), and \(\frac{\partial }{\partial \rho _{31} } {\tilde{\Upsilon }} = E\{ X_2 \mathrm {sgn}( X_3 ) \} = \sqrt{\frac{2}{\pi }} \rho _{23}\). In addition, when \(\rho _{12} = \rho _{23} = \rho _{31} =0\), we have \({\tilde{\Upsilon }} = E \{ X_1 X_2 | X_3 | \} = E \{ X_1 \} E \{ X_2 \} E \{ | X_3 | \} =0\). Based on these observations, we have (14) after some straightforward steps.

Similarly, let \({\tilde{\Upsilon }} = E\{X_1 | X_2 | \mathrm {sgn}( X_3 ) \}\). Then \(\frac{\partial }{\partial \rho _{12}} {\tilde{\Upsilon }} = E\{\mathrm {sgn}( X_2 ) \mathrm {sgn}( X_3 ) \} = \frac{2}{\pi } \sin ^{-1} \rho _{23}\) from the theorem in Price (1958). Now, putting \({\tilde{\Upsilon }} = \frac{2}{\pi } \rho _{12} \sin ^{-1} \rho _{23} + \zeta _1 ( \rho _{23}, \rho _{31} )\), we have \(\zeta _1 ( \rho _{23}, \rho _{31}) = \frac{2}{\pi } \rho _{31} \sqrt{ 1- \rho _{23}^2} + \zeta _2 ( \rho _{23})\) since \(\frac{\partial }{\partial \rho _{31}} {\tilde{\Upsilon }} = \frac{\partial }{\partial \rho _{31}} \zeta _1 ( \rho _{23}, \rho _{31} ) = 2 E\{ | X_2 | \delta ( X_3 ) \}= \frac{2}{\pi } \sqrt{ 1- \rho _{23}^2}\). To determine \( \zeta _1 ( \rho _{23}, \rho _{31} )\) let us next note that \(\frac{\partial {\tilde{\Upsilon }} }{\partial \rho _{23}} = 2 E\{X_1 \mathrm {sgn}( X_2 ) \delta ( X_3 ) \}\): since \(2 E\{X_1 \mathrm {sgn}( X_2 ) \delta ( X_3 ) \} = \frac{2}{\pi }\frac{\rho _{12} - \rho _{23}\rho _{31}}{ \sqrt{1- \rho _{23}^2}}\) from (11) and \(\frac{\partial {\tilde{\Upsilon }} }{\partial \rho _{23}} = \frac{2}{\pi }\frac{\rho _{12}}{ \sqrt{1- \rho _{23}^2}} + \frac{2}{\pi }\frac{\rho _{31} ( -2\rho _{23} )}{ 2\sqrt{1- \rho _{23}^2}} + \zeta _2^{\prime } ( \rho _{23} ) \), it is clear that \(\zeta _2 ( \rho _{23} )\) is a constant. Subsequently, since \(\left. E\{X_1 | X_2 | \mathrm {sgn}( X_3 ) \} \right| _{\rho _{12}=\rho _{23}=\rho _{31}=0} = 0\), we have \( \zeta _2 ( \rho _{23} ) =0\). Consequently, we have (15). \(\square \)

Proof of Theorem 2: Eqs. (16) and (17)

To explicitly denote the dependence of the pdf on the correlation coefficients \({\underline{\rho }} = ( \rho _{12}, \rho _{23}, \rho _{31})\), let us now write \(f_3 (x_1 , x_2, x_3 )\) as \(g_{{\underline{\rho }}} (x_1 , x_2, x_3 )\). Then we clearly have

$$\begin{aligned} g_{{\underline{\rho }}} \left( -x_1 , x_2, x_3 \right)= & {} \left. g_{{\underline{\rho }}} \left( x_1 , x_2, x_3 \right) \right| _{\langle 1\rangle } , \end{aligned}$$
(59)
$$\begin{aligned} g_{{\underline{\rho }}} \left( x_1 , -x_2, x_3 \right)= & {} \left. g_{{\underline{\rho }}} \left( x_1 , x_2, x_3 \right) \right| _{\langle 2\rangle }, \end{aligned}$$
(60)

and

$$\begin{aligned} g_{{\underline{\rho }}} \left( x_1 , x_2,- x_3 \right)= & {} \left. g_{{\underline{\rho }}} \left( x_1 , x_2, x_3 \right) \right| _{\langle 3\rangle }. \end{aligned}$$
(61)

In addition, we have

$$\begin{aligned}&\int _{0}^{\infty } \int _{0}^{\infty } \int _{-\infty }^0 h\left( x_1 , x_2, x_3 \right) g_{{\underline{\rho }}} \left( x_1 , x_2, x_3 \right) dx_1 dx_2 dx_3 \nonumber \\&\quad = \ \int _{0}^{\infty } \int _{0}^{\infty } \int _{\infty }^0 h\left( x_1 , x_2, -t \right) g_{{\underline{\rho }}}\left( x_1 , x_2, -t \right) dx_1 dx_2 (-dt) \nonumber \\&\quad = \ \left. \int _{0}^{\infty } \int _{0}^{\infty } \int _{0}^{\infty } h\left( x_1 , x_2, -x_3 \right) g_{{\underline{\rho }}} \left( x_1 , x_2, x_3 \right) dx_1 dx_2 dx_3 \right| _{\langle 3\rangle } , \ \ \ \ \end{aligned}$$
(62)

for example. We also have

$$\begin{aligned} \left. \beta _{ij,k} \right| _{\langle i\rangle } = \left. \beta _{ij,k} \right| _{\langle j\rangle }= & {} - \left. \beta _{ij,k} \right| _{\langle k\rangle } = - \beta _{ij,k} , \end{aligned}$$
(63)
$$\begin{aligned} \frac{\partial \sin ^{-1} \beta _{ij,k}}{\partial \rho _{ij}}= & {} \frac{1}{ \sqrt{ \left| K_3 \right| }} , \end{aligned}$$
(64)

and

$$\begin{aligned} \frac{\partial \sin ^{-1} \beta _{ij,k}}{\partial \rho _{jk}}= & {} - \frac{\rho _{ki}-\rho _{ij}\rho _{jk}}{ \left( 1-\rho _{jk}^2 \right) \sqrt{ \left| K_3 \right| } } . \end{aligned}$$
(65)

Now, for the incomplete moment [rst] and absolute moment \(\nu _{rst}\), we have

$$\begin{aligned}{}[1,0,0]= & {} \frac{1}{\sqrt{8 \pi ^3}} \left\{ \frac{\pi }{2} + \sin ^{-1} \beta _{23,1} + \rho _{12} \left( \frac{\pi }{2} + \sin ^{-1} \beta _{31,2} \right) \right. \nonumber \\&\left. + \rho _{31} \left( \frac{\pi }{2} + \sin ^{-1} \beta _{12,3} \right) \right\} , \end{aligned}$$
(66)
$$\begin{aligned}= & {} \frac{1}{\sqrt{8 \pi ^3}} \left\{ \sqrt{ \left| K_3 \right| } + \sum ^c \left( \rho _{ij} + \rho _{jk} \rho _{ki} \right) \left( \frac{\pi }{2} + \sin ^{-1} \beta _{ij,k} \right) \right\} , \end{aligned}$$
(67)
$$\begin{aligned} \nu _{211}= & {} \frac{2}{\pi } \left\{ \left( \rho _{23}+2\rho _{12}\rho _{31} \right) \sin ^{-1}\rho _{23} + \left( 1+ \rho _{12}^2+\rho _{31}^2 \right) \sqrt{1-\rho _{23}^2}\right\} , \end{aligned}$$
(68)

and

$$\begin{aligned} \nu _{221}= & {} \sqrt{\frac{2}{\pi }} \left( 1+2\rho _{12}^2 +\rho _{23}^2+\rho _{31}^2 + 4\rho _{12}\rho _{23}\rho _{31} - \rho _{23}^2\rho _{31}^2 \right) \end{aligned}$$
(69)

from Nabeya (1952), Kamat (1953), Kamat (1958), and Johnson and Kotz (1972). Recollecting (59)–(63), we easily get (16) as

$$\begin{aligned} E \left\{ \left| X_1 X_2 X_3 \right| \right\}= & {} \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } \left| x_1 x_2 x_3 \right| g_{{\underline{\rho }}} \left( x_1 , x_2, x_3 \right) dx_1 dx_2 dx_3 \nonumber \\= & {} \ [1, 1, 1] + [1, 1, 1]_{<3>} + [1, 1, 1]_{<2>} + [1, 1, 1]_{<1>} \nonumber \\&+ [1, 1, 1]_{<1>} + [1, 1, 1]_{<2>} + [1, 1, 1]_{<3>} + [1, 1, 1] \nonumber \\= & {} \ \sqrt{\frac{8}{\pi ^3}} \left\{ \sqrt{\left| K_3 \right| } + \sum ^c \left( \rho _{ij} + \rho _{jk} \rho _{ki} \right) \sin ^{-1} \beta _{ij,k} \right\} \end{aligned}$$
(70)

using (67).

The result (17) can similarly be shown using (66): here, we provide another proof for (17). Again applying the theorem in Price (1958), we have

$$\begin{aligned}&E \left\{ \mathrm {sgn}\left( X_1 \right) \mathrm {sgn}\left( X_2 \right) \left| X_3 \right| \right\} = \frac{\partial }{\partial \rho _{12}} E \left\{ \left| X_1 X_2 X_3 \right| \right\} . \end{aligned}$$
(71)

Now we have

$$\begin{aligned}&\qquad \qquad \qquad \frac{\partial \sqrt{ \left| K_3 \right| }}{\partial \rho _{12}} \ = \ - \frac{\rho _{12} - \rho _{23}\rho _{31}}{\sqrt{ \left| K_3 \right| } } , \end{aligned}$$
(72)
$$\begin{aligned}&\frac{\partial }{\partial \rho _{12}} \left\{ \left( \rho _{12} + \rho _{23}\rho _{31} \right) \sin ^{-1} \beta _{12,3} \right\} = \sin ^{-1} \beta _{12,3} + \frac{ \rho _{12} + \rho _{23}\rho _{31} }{ \sqrt{ \left| K_3 \right| }} , \end{aligned}$$
(73)
$$\begin{aligned}&\frac{\partial }{\partial \rho _{12}}\left\{ \left( \rho _{23} + \rho _{31}\rho _{12} \right) \sin ^{-1} \beta _{23,1}\right\} = \rho _{31} \sin ^{-1} \beta _{23,1}\nonumber \\&\qquad + \frac{\left( \rho _{23} + \rho _{31}\rho _{12}\right) \left( -\rho _{31} + \rho _{12}\rho _{23}\right) }{ \sqrt{ \left| K_3 \right| } \left( 1-\rho _{12}^2 \right) } , \end{aligned}$$
(74)

and

$$\begin{aligned}&\frac{\partial }{\partial \rho _{12}} \left\{ \left( \rho _{31} + \rho _{12}\rho _{23} \right) \sin ^{-1} \beta _{31,2}\right\} = \rho _{23} \sin ^{-1} \beta _{31,2} \nonumber \\&\qquad + \frac{\left( \rho _{31} + \rho _{12}\rho _{23}\right) \left( -\rho _{23} + \rho _{31}\rho _{12}\right) }{\sqrt{ \left| K_3 \right| } \left( 1-\rho _{12}^2 \right) }. \end{aligned}$$
(75)

Note also that

$$\begin{aligned}&\frac{ \rho _{12} + \rho _{23}\rho _{31} }{ \sqrt{ \left| K_3 \right| }} + \frac{\left( \rho _{23} + \rho _{31}\rho _{12}\right) \left( -\rho _{31} + \rho _{12}\rho _{23}\right) }{ \sqrt{ \left| K_3 \right| } \left( 1-\rho _{12}^2 \right) } \nonumber \\&\quad \quad + \frac{\left( \rho _{31} + \rho _{12}\rho _{23}\right) \left( -\rho _{23} + \rho _{31}\rho _{12}\right) }{\sqrt{ \left| K_3 \right| } \left( 1-\rho _{12}^2 \right) } \nonumber \\&\quad = \ \frac{ \rho _{12} + \rho _{23}\rho _{31} }{ \sqrt{ \left| K_3 \right| }} - \frac{ 2 \rho _{23}\rho _{31} }{ \sqrt{ \left| K_3 \right| }} = \frac{\rho _{12} - \rho _{23}\rho _{31}}{\sqrt{ \left| K_3 \right| }} \end{aligned}$$
(76)

since \(\left( \rho _{23} + \rho _{31}\rho _{12}\right) \left( -\rho _{31} + \rho _{12}\rho _{23}\right) + \left( \rho _{31} + \rho _{12}\rho _{23}\right) \left( -\rho _{23} + \rho _{31}\rho _{12}\right) = -2 \rho _{23} \rho _{31} \left( 1- \rho _{12}^2 \right) \). Using (72)–(76), it is straightforward to get (17) from (71). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, I., Lee, S., Kim, Y.H. et al. Explicit formulae and implication of the expected values of some nonlinear statistics of tri-variate Gaussian variables. J. Korean Stat. Soc. 49, 117–138 (2020). https://doi.org/10.1007/s42952-019-00009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-019-00009-9

Keywords

Mathematics Subject Classification

Navigation