Skip to main content
Log in

Blending of Virgin and RAP Binder for Asphalt Mixes with High RAP Contents: A Pilot Study

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Reusing reclaimed asphalt pavement (RAP) presents an opportunity to reduce environmental burdens and encourage sustainable development. However, a concern exists about blending RAP binder and virgin asphalt binder. While RAP mixtures assume complete blending between these binders, the actual extent of this blending remains uncertain. Lower blending percentages can reduce the total binder content of the asphalt mixture, potentially leading to cracking failure. From this perspective, the present study quantifies the effect of blending between the RAP and virgin asphalt binders, considering various influential factors such as mixing temperatures, RAP gradation, and RAP source. Three different blending scenarios (0%, 50%, and 100%) were hypothesized in this study, and their impact on the performance of asphalt mixtures and binders was evaluated through semi-circular bend and rheological tests, respectively. To find the blending efficiency, the asphalt mixtures were also prepared using actual RAP (coated with RAP binder) and virgin aggregates. Results revealed that the amount of RAP binder in the final mix greatly influenced the cracking resistance. Even though the gradation and design binder content of two RAP mixtures are the same, differences in their cracking resistance highlight the important role of active binder content in the final mix. The findings emphasize the critical role of blending in determining the cracking resistance of RAP mixes. With the increase in blending levels between the RAP and virgin binder, the asphalt mixtures exhibit higher cracking resistance. Considering all the aspects, an average blending of 56.5% was recommended for the RAP mix design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. ODOT. (2022). Oregon Department of Transportation: 2022 Pavement condition report. https://doi.org/10.1017/s0047160700503977.

  2. Albayati, A., Mosawe, H. A., & Sukhija, M. (2023). Appraising the synergistic use of recycled asphalt pavement and recycled concrete aggregate for the production of sustainable asphalt concrete. Case Studies in Construction Materials. https://doi.org/10.1016/j.cscm.2023.e02237

    Article  Google Scholar 

  3. Sukhija, M., Prasad, A. N., Saboo, N., & Mashaan, N. (2022). Assessment of virgin binder-blended rejuvenators and antistripping agents for hot recycled asphalt mixture. International Journal of Pavement Research Technology. https://doi.org/10.1007/S42947-022-00192-9/METRICS

    Article  Google Scholar 

  4. Dubey, P., Paswan, S., Sukhija, M., & Saboo, N. (2020). Assessing the effect of reclaimed asphalt pavement on mechanical properties of dry-lean concrete. Journal of Materials and Civil Engineering. https://www.researchgate.net/publication/342330016_Assessing_the_Effect_of_Reclaimed_Asphalt_Pavement_on_Mechanical_Properties_of_Dry_Lean_Concrete.

  5. Williams, B. A., Wills, J. R., & Shacat, J. (2021). IS 138: Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage 2021. Natioanl Asph. Pavement Assoc.

  6. Shacat, J., Willis, J. R., & Ciavola, B. (2022). SIP 106: GHG emissions inventory for asphalt mix production. Current industry practices and opportunities to reduce future emissions. Natl. Asphlat Pavement Assoc. SIP-106 (p. 32).

  7. Ziari, H., Moniri, A., Bahri, P., & Saghafi, Y. (2019). The effect of rejuvenators on the aging resistance of recycled asphalt mixtures. Construction and Building Materials, 224, 89–98. https://doi.org/10.1016/j.conbuildmat.2019.06.181

    Article  Google Scholar 

  8. Mazzoni, G., Bocci, E., & Canestrari, F. (2018). Influence of rejuvenators on bitumen ageing in hot recycled asphalt mixtures. Journal of Traffic Transport Engineering (English Edition), 5, 157–168. https://doi.org/10.1016/j.jtte.2018.01.001

    Article  Google Scholar 

  9. Zaumanis, M., Mallick, R. B., & Frank, R. (2014). 100% recycled hot mix asphalt: A review and analysis. Resources, Conservation and Recycling, 92, 230–245. https://doi.org/10.1016/j.resconrec.2014.07.007

    Article  Google Scholar 

  10. Ma, Y., Zheng, K., Ding, Y., Polaczyk, P., Jiang, X., & Huang, B. (2022). Binder availability and blending efficiency of reclaimed asphalt: A state-of-the-art review. Construction and Building Materials, 357, 129334. https://doi.org/10.1016/j.conbuildmat.2022.129334

    Article  Google Scholar 

  11. Prasad, A. N., Saboo, N., & Pani, A. (2023). Material and mix design aspects of hot recycled asphalt mixes: A review. Environmental Science and Pollution Research, 2023, 1–37. https://doi.org/10.1007/S11356-023-29913-8

    Article  Google Scholar 

  12. Amani, S., Jahangiri, B., & Karimi, M. M. (2023). Performance characterization of asphalt mixtures under different aging levels: A fracture-based method. Construction and Building Materials, 383, 131126. https://doi.org/10.1016/j.conbuildmat.2023.131126

    Article  Google Scholar 

  13. Keymanesh, M. R., Amani, S., Omran, A. T., & Karimi, M. M. (2023). Evaluation of the impact of long-term aging on fracture properties of warm mix asphalt (WMA) with high RAP contents. Construction and Building Materials, 400, 132671. https://doi.org/10.1016/j.conbuildmat.2023.132671

    Article  Google Scholar 

  14. Kriz, P., Grant, D. L., Veloza, B. A., Gale, M. J., Blahey, A. G., Brownie, J. H., Shirts, R. D., & Maccarrone, S. (2014). Blending and diffusion of reclaimed asphalt pavement and virgin asphalt binders. Road Materials and Pavement Design, 15, 78–112. https://doi.org/10.1080/14680629.2014.927411

    Article  Google Scholar 

  15. Xing, C., Li, M., Liu, L., Lu, R., Liu, N., Wu, W., & Yuan, D. (2023). A comprehensive review on the blending condition between virgin and RAP asphalt binders in hot recycled asphalt mixtures: Mechanisms, evaluation methods, and influencing factors. Journal of Cleaner Production, 398, 136515. https://doi.org/10.1016/j.jclepro.2023.136515

    Article  Google Scholar 

  16. West, R., Willis, J. R., Marasteanu, M. (2013). NCHRP 752: Improved mix design, evaluation, and materials management practices for hot mix asphalt with high reclaimed asphalt pavement content, Washington D.C.

  17. Sreeram, A., Leng, Z., Zhang, Y., & Padhan, R. K. (2018). Evaluation of RAP binder mobilisation and blending efficiency in bituminous mixtures: An approach using ATR-FTIR and artificial aggregate. Construction and Building Materials, 179, 245–253. https://doi.org/10.1016/j.conbuildmat.2018.05.154

    Article  Google Scholar 

  18. Ding, Y., Huang, B., & Shu, X. (2018). Blending efficiency evaluation of plant asphalt mixtures using fluorescence microscopy. Construction and Building Materials, 161, 461–467. https://doi.org/10.1016/j.conbuildmat.2017.11.138

    Article  Google Scholar 

  19. Abdelaziz, A., Epps Martin, A., Arámbula Mercado, E., & Sobieski, T. (2021). Study of the quantification of recycled binder activity in asphalt mixtures with RAP. Construction Building Materials. https://doi.org/10.1016/j.conbuildmat.2021.125189

    Article  Google Scholar 

  20. Cavalli, M. C., Partl, M. N., & Poulikakos, L. D. (2017). Measuring the binder film residues on black rock in mixtures with high amounts of reclaimed asphalt. Journal of Cleaner Production, 149, 665–672. https://doi.org/10.1016/j.jclepro.2017.02.055

    Article  Google Scholar 

  21. Ali, H. A., Mohammad, L., Mohammadafzali, M., Haddadi, F., Akentuna, M., Sholar, G., Moseley, H., Rilko, W., & Allen, C. (2021). Investigating the effect of degree of blending on performance of high RAP content mixtures. Journal of Materials and Civil Engineering. https://doi.org/10.1061/(asce)mt.1943-5533.0003621

    Article  Google Scholar 

  22. Jiang, Y., Gu, X., Zhou, Z., Ni, F., & Dong, Q. (2018). Laboratory observation and evaluation of asphalt blends of reclaimed asphalt pavement binder with virgin binder using SEM/EDS. Transportation Research Record, 2672, 69–78. https://doi.org/10.1177/0361198118782023

    Article  Google Scholar 

  23. Hettiarachchi, C., Hou, X., Xiang, Q., Yong, D., & Xiao, F. (2020). A blending efficiency model for virgin and aged binders in recycled asphalt mixtures based on blending temperature and duration. Resources, Conservation and Recycling, 161, 104957. https://doi.org/10.1016/j.resconrec.2020.104957

    Article  Google Scholar 

  24. Xu, Y., Chou, Z., Li, Y., Ji, J., & Xu, S. F. (2019). Effect of blending degree between virgin and aged binder on pavement performance of recycled asphalt mixture with high RAP content. Advances in Materials Science and Engineering. https://doi.org/10.1155/2019/5741642

    Article  Google Scholar 

  25. Abdalfattah, I. A., Mogawer, W. S., & Stuart, K. (2021). Quantification of the degree of blending in hot-mix asphalt (HMA) with reclaimed asphalt pavement (RAP) using Energy Dispersive X-Ray Spectroscopy (EDX) analysis. Journal of Cleaner Production, 294, 126261. https://doi.org/10.1016/j.jclepro.2021.126261

    Article  Google Scholar 

  26. Coleri, E., Haddadi, S. S., Sreedhar, S., Lewis, S., Zhang, Y., & Wruck, B. (2018). FHWA-OR-18-05: Binder-grade bumping and high binder content to improve performance of RAP-RAS mixtures.

  27. Kaseer, F., Arámbula-Mercado, E., & Martin, A. E. (2019). A method to quantify reclaimed asphalt pavement binder availability (effective RAP Binder) in recycled asphalt mixes. Transportation Research Record. https://doi.org/10.1177/0361198118821366

    Article  Google Scholar 

  28. Menegusso Pires, G., Lo Presti, D., & Airey, G. D. (2021). A practical approach to estimate the degree of binder activity of reclaimed asphalt materials. Road Materials and Pavement Design, 22, 1093–1116. https://doi.org/10.1080/14680629.2019.1663244

    Article  Google Scholar 

  29. Ma, Y., Ding, Y., Zheng, K., Polaczyk, P., Zhang, M., Xiao, R., & Huang, B. (2023). Effects of immobilized RAP binder on asphalt-aggregate interaction and performance of 100% recycled asphalt mixtures. Journal of Materials in Civil Engineering, 35, 1–10. https://doi.org/10.1061/(asce)mt.1943-5533.0004659

    Article  Google Scholar 

  30. Li, N., Tang, W., Yu, X., Zhan, H., Wang, X., & Wang, Z. (2022). Laboratory investigation on blending process of reclaimed asphalt mixture. Construction and Building Materials, 325, 126793. https://doi.org/10.1016/j.conbuildmat.2022.126793

    Article  Google Scholar 

  31. Cooper, S. B., Jr., Mohammad, L. N., & Elseifi, M. A. (2017). Laboratory performance of asphalt mixtures containing recycled asphalt shingles, reclaimed asphalt pavement, and recycling agents. Journal of Materials and Civil Enginerring, 29, 4016001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001658

    Article  Google Scholar 

  32. Zhao, S., Huang, B., Shu, X., & Woods, M. E. (2015). Quantitative characterization of binder blending: How much recycled binder is mobilized during mixing? Transportation Research Record, 2506, 72–80. https://doi.org/10.3141/2506-08

    Article  Google Scholar 

  33. Yang, C., Wu, S., Xie, J., Amirkhanian, S., Zhao, Z., Xu, H., Wang, F., & Zhang, L. (2023). Development of blending model for RAP and virgin asphalt in recycled asphalt mixtures via a micron-Fe3O4 tracer. Journal of Cleaner Production, 383, 135407. https://doi.org/10.1016/j.jclepro.2022.135407

    Article  Google Scholar 

  34. Ma, Y., Polaczyk, P., Hu, W., Zhang, M., & Huang, B. (2021). Quantifying the effective mobilized RAP content during hot in-place recycling techniques. Journal of Cleaner Production, 314, 127953. https://doi.org/10.1016/j.jclepro.2021.127953

    Article  Google Scholar 

  35. McDaniel, R., Soleymani, H., Anderson, R. M., Turner, P., Peterson, R., & Harrigan, E. T. (2001). Recommended use of reclaimed asphalt pavement in the superpave mix design method: Technician’s guidelines, Natl. Coop. Highw. Res. Progr. Res. Results Dig. (p. 58).

  36. Antunes, V., Neves, J., & Freire, A. C. (2021). Performance assessment of reclaimed asphalt pavement (RAP) in road surface mixtures. Recycling, 6, 1–17. https://doi.org/10.3390/recycling6020032

    Article  Google Scholar 

  37. Orešković, M., Menegusso Pires, G., Bressi, S., Vasconcelos, K., & Lo Presti, D. (2020). Quantitative assessment of the parameters linked to the blending between reclaimed asphalt binder and recycling agent: A literature review. Construction Building Materials. https://doi.org/10.1016/j.conbuildmat.2019.117323

    Article  Google Scholar 

  38. Bonaquist, R. (2007). Can i run more RAP?, HMAT Hot Mix Asph. Technol. (p. 12).

  39. Christensen, D. W., Pellinen, T., & Bonaquist, R. F. (2003). Hirsch model for estimating the modulus of asphalt concrete. In Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess., (pp. 97–121).

  40. McDaniel, R. S., Shah, A., & Huber, G. (2012). Investigation of low and high temperature properties of plant-produced RAP mixtures, FHWA-HRT-11-058, Fed. Highw. Adm. 101. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/11058/index.cfm. Accessed 11 Feb 2023.

  41. McDaniel, R. S., Shah, A., Huber, G. A., & Copeland, A. (2012). Effects of reclaimed asphalt pavement content and virgin binder grade on properties of plant produced mixtures. Road Materials Pavement Design, 13, 161–182. https://doi.org/10.1080/14680629.2012.657066

    Article  Google Scholar 

  42. Zokaei Ashtiani, M., Mogawer, W. S., & Tabatabaee, N. (2022). Local calibration of the Hirsch model to determine the degree of blending between aged and virgin asphalt binders. Road Materials and Pavement Design, 23, 2132–2150. https://doi.org/10.1080/14680629.2021.1954071

    Article  Google Scholar 

  43. Shirodkar, P., Mehta, Y., Nolan, A., Sonpal, K., Norton, A., Tomlinson, C., Dubois, E., Sullivan, P., & Sauber, R. (2011). A study to determine the degree of partial blending of reclaimed asphalt pavement (RAP) binder for high RAP hot mix asphalt. Construction and Building Materials, 25, 150–155. https://doi.org/10.1016/j.conbuildmat.2010.06.045

    Article  Google Scholar 

  44. Zhang, Y., Chen, H., Wang, K., Huang, G., Shen, Z., & Sun, L. (2023). Effect of recycled aggregate gradation on the degree of blending and performance of recycled hot-mix asphalt (HMA). Journal of Cleaner Production, 398, 136550. https://doi.org/10.1016/j.jclepro.2023.136550

    Article  Google Scholar 

  45. Alvis, M. A., Pape, S., Xue, L. G., & Castorena, C. (2023). Effects of asphalt mixture constituents on the recycled binder contribution. Journal of Transportation Research Board. https://doi.org/10.1177/03611981231165021

    Article  Google Scholar 

  46. Pape, S., & Castorena, C. (2022). Analysis of the role of recycled material agglomerations on the location of fracture in asphalt mixtures. Journal of Transportation Engineering Part B Pavements, 148, 1–11. https://doi.org/10.1061/jpeodx.0000382

    Article  Google Scholar 

  47. Rad, F. Y., Sefidmazgi, N. R., & Bahia, H. (2014). Application of diffusion mechanism: Degree of blending between fresh and recycled asphalt pavement binder in dynamic shear rheometer. Transportation Research Record, 2444, 71–77. https://doi.org/10.3141/2444-08

    Article  Google Scholar 

  48. Yu, S., Shen, S., Zhang, C., Zhang, W., & Jia, X. (2017). Evaluation of the blending effectiveness of reclaimed asphalt pavement binder. Journal of Materials in Civil Engineering, 29, 04017230. https://doi.org/10.1061/(asce)mt.1943-5533.0002095

    Article  Google Scholar 

  49. AASHTO T 308. (2022). Standard method of test for determining the asphalt binder content of asphalt mixtures by the ignition method. Washington D.C.

  50. ASTM D2172. (2017). Standard test methods for quantitative extraction of asphalt binder from asphalt mixtures. American Society of Testing Materials. https://doi.org/10.1520/D2172.

  51. ASTM D5404. (2011). Standard practice for recovery of asphalt from solution using the rotary evaporator, ASTM Stand. https://www.astm.org/standards/d5404. Accessed 6 Mar 2023.

  52. AASHTO TP 105. (2020). Standard method for determining the fracture energy of asphalt mixtures using the semi circular bend geometry (SCB), Washington D.C.

  53. Sreedhar, S., & Coleri, E. (2022). The effect of long-term aging on fatigue cracking resistance of asphalt mixtures. International Journal of Pavement Engineering, 23, 308–320. https://doi.org/10.1080/10298436.2020.1745206

    Article  Google Scholar 

  54. Saha, G., & Biligiri, K. P. (2016). Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research. Construction and Building Materials, 105, 103–112. https://doi.org/10.1016/j.conbuildmat.2015.12.046

    Article  Google Scholar 

  55. AASHTO T 312. (2019). Standard method of test for preparing and determining the density of asphalt mixture specimens by means of the superpave gyratory compactor, Washington D.C.

  56. The MathWorks Inc. (2016). MATLAB and statistics toolbox.

  57. Coleri, E., Sreedhar, S., Haddadi, S., Wruck B. (2017). FHWA-OR-18-06: Adjusting asphalt mixes for increased durability and implementation of a performance tester to evaluate fatigue cracking of asphalt concrete.

  58. Ozer, H., Al-Qadi, I. L., Lambros, J., El-Khatib, A., Singhvi, P., & Doll, B. (2016). Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Construction and Building Materials, 115, 390–401. https://doi.org/10.1016/j.conbuildmat.2016.03.144

    Article  Google Scholar 

  59. ASTM. (2015). ASTM D7175-15: Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer. https://www.astm.org/d7175-08.html. Accessed 1 Apr 2023

  60. Harvey, J., Liu, A., Zhou, J., Signore, M., Coleri, E., & He, Y. (2015). UCPRC-RR-2015-01: Superpave implementation phase II: Comparison of performance-related test results, UC Davis. https://escholarship.org/uc/item/7vg1c54z. Accessed 1 Apr 2023

Download references

Acknowledgements

This paper describes research activities that were requested and sponsored by the Oregon Department of Transportation (ODOT). The contents of this paper reflect the views of the authors and do not reflect the official views or policies of the State of Oregon or Federal Highway Administration. Federal and State sponsorship and interest are gratefully acknowledged. The authors thank the members of the ODOT Project Technical Advisory Committee and ODOT research for their advice and assistance in the preparation of this report. The authors would also like to thank Tim Flowerday, Nicholas Kolstad, John Paul Morton, Andrew Johnson, Mostafa Estaji, Ihsan Obaid, Natasha Anisimova, Matthew Haynes, and Jawad Qassem for their help with sieving, batching, and measuring theoretical maximum specific gravity of prepared samples, as well as James Batti for his help in the laboratory.

Funding

The work is supported by Oregon Department of Transportation- Agreement Number: 30530 (Work order number: 16-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Sukhija.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, S., Coleri, E., Sukhija, M. et al. Blending of Virgin and RAP Binder for Asphalt Mixes with High RAP Contents: A Pilot Study. Int. J. Pavement Res. Technol. (2024). https://doi.org/10.1007/s42947-023-00405-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42947-023-00405-9

Keywords

Navigation