Skip to main content

Advertisement

Log in

Fatigue Performance Analysis and Life Prediction of Wood Tar-Based Rejuvenated Asphalt

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

To provide theoretical and data support for the fatigue performance test and life prediction of rejuvenated asphalt mixture, and supply parameter support for the design of rejuvenated asphalt pavement, dynamic shear rheometer (DSR) was used to conduct repeated shear tests on original asphalt, wood tar-based rejuvenated asphalt and RA-102 rejuvenated asphalt to evaluate the rationality of three parameters are defined as follows: complex modulus parameter (Nf50), dissipated energy ratio parameter (NP20), ratio of dissipated energy change parameter (Nfm) for evaluating the fatigue performance of rejuvenated asphalt, and the fatigue life prediction equation of wood tar-based rejuvenated asphalt was established considering the influence of temperature. The results show that NP20 has clear definition and accurate calculation of asphalt fatigue life, and takes into account the change of internal energy of asphalt material, which can be used as evaluation parameter of fatigue performance of wood tar-based rejuvenated asphalt. The fatigue performance of wood tar-based rejuvenated asphalt decreases with the increase of the temperature. The fitted prediction equations can accurately predict the fatigue life of wood tar-based rejuvenated asphalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Ziari, H., Moniri, A., Bahri, P., & Saghafi, Y. (2019). The effect of rejuvenators on the aging resistance of recycled asphalt mixtures. Construction and Building Materials, 224, 89–98. https://doi.org/10.1016/j.conbuildmat.2019.06.181

    Article  Google Scholar 

  2. Zhou, Z., Gu, X., Ni, F., Li, Q., & Ma, X. (2017). Cracking resistance characterization of asphalt concrete containing reclaimed asphalt pavement at intermediate temperatures. Transportation Research Record, 2633(1), 46–57. https://doi.org/10.3141/2633-07

    Article  Google Scholar 

  3. Mannan, U. A., Islam, M. R., & Tarefder, R. A. (2015). Effects of recycled asphalt pavements on the fatigue life of asphalt under different strain levels and loading frequencies. International Journal of Fatigue, 78, 72–80. https://doi.org/10.1016/j.ijfatigue.2015.04.004

    Article  Google Scholar 

  4. Hoy, M., Horpibulsuk, S., & Arulrajah, A. (2016). Strength development of recycled asphalt pavement–fly ash geopolymer as a road construction material. Construction and Building Materials, 117, 209–219. https://doi.org/10.1016/j.conbuildmat.2016.04.136

    Article  Google Scholar 

  5. Riccardi, C., Falchetto, A. C., Wistuba, M. P., & Losa, M. (2017). Fatigue comparisons of mortars at different volume concentration of aggregate particles. International Journal of Fatigue, 104, 416–421. https://doi.org/10.1016/j.ijfatigue.2017.08.005

    Article  Google Scholar 

  6. Zhou, Z., Gu, X., Dong, Q., Ni, F., & Jiang, Y. (2019). Rutting and fatigue cracking performance of SBS-RAP blended binders with a rejuvenator. Construction and Building Materials, 203, 294–303. https://doi.org/10.1016/j.conbuildmat.2019.01.119

    Article  Google Scholar 

  7. Zhang, X., Zhu, J., Wu, C., Wu, Q., Liu, K., & Jiang, K. (2020). Preparation and properties of wood tar-based rejuvenated asphalt. Materials, 13(5), 1123. https://doi.org/10.3390/ma13051123

    Article  Google Scholar 

  8. Sui, H., Wang, X., Shao, J., Li, Y., Zhou, J., & Yang, H. (2014). Analysis of wood tar and its chemical composution. Acta Energiae Solaris Sinica, 35(11), 2204–2209. https://doi.org/10.3969/j.issn.0254-0096.2014.11.021

    Article  Google Scholar 

  9. Yu, D., Fan, Y., Feng, C., Wu, Y., Liu, W., Fu, T., & Qiu, R. (2022). Preparation and performance of pervious concrete with wood tar-formaldehyde-modified epoxy resins. Construction and Building Materials, 350, 128819. https://doi.org/10.1016/j.conbuildmat.2022.128819

    Article  Google Scholar 

  10. Sui, H., Tian, C., Chen, J., Fullmer, S., & Zhang, Z. (2022). Characterization and separation of wood tar by full temperature range fractional distillation. Separation and Purification Technology, 302, 122098. https://doi.org/10.1016/j.seppur.2022.122098

    Article  Google Scholar 

  11. Lis, T., Korzec, N., Frohs, W., Tomala, J., Frączek-Szczypta, A., & Błażewicz, S. (2016). Wood-derived tar as a carbon binder precursor for carbon and graphite technology. Journal of Wood Chemistry and Technology, 36(6), 393–400. https://doi.org/10.1080/02773813.2016.1198380

    Article  Google Scholar 

  12. Yang, X., You, Z., Dai, Q., & Mills-Beale, J. (2014). Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources. Construction and Building Materials, 51, 424–431. https://doi.org/10.1016/j.conbuildmat.2013.11.017

    Article  Google Scholar 

  13. Zaumanis, M., Mallick, R. B., Poulikakos, L., & Frank, R. (2014). Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Construction and Building Materials, 71, 538–550. https://doi.org/10.1016/j.conbuildmat.2014.08.073

    Article  Google Scholar 

  14. Liu, C., Jiang, K., Wu, C., & Liu, K. (2021). Low Temperature performance evaluation and mechanism analysis of wood tar-based rejuvenated Asphalt. Journal of Building Materials, 24(6), 1255–1264. https://doi.org/10.3969/j.issn.1007-9629.2021.06.018

    Article  Google Scholar 

  15. Shan, L., Tan, Y., Xu, Y., Zhang, H., & Ren, N. (2016). Fatigue damage evolution rules of asphalt under controlled-stress and controlled-strain modes. China Journal of Highway and Transport, 29(1), 16–21. https://doi.org/10.3969/j.issn.1001-7372.2016.01.002

    Article  Google Scholar 

  16. Raithby, K. D., & Sterling, A. B. (1972). Some effects of loading history on the performance of rolled asphalt. Crowthorne, England: Transport and Road Research Laboratory, Report TRRLLR496

  17. Pérez-Jiménez, F. E., Botella, R., & Miró, R. (2012). Differentiating between damage and thixotropy in asphalt binder’s fatigue tests. Construction and Building Materials, 31, 212–219. https://doi.org/10.1016/j.conbuildmat.2011.12.098

    Article  Google Scholar 

  18. Bonnetti, K. S., Nam, K., & Bahia, H. U. (2002). Measuring and defining fatigue behavior of asphalt binders. Transportation Research Record, 1810(1), 33–43. https://doi.org/10.3141/1810-05

    Article  Google Scholar 

  19. Shen, S., Chiu, H. M., & Huang, H. (2010). Characterization of fatigue and healing in asphalt binders. Journal of Materials in Civil Engineering, 22(9), 846–852. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000080

    Article  Google Scholar 

  20. Kai, C., Wenyuan, X., Dan, C., & Huimin, F. (2018). High-and low-temperature properties and thermal stability of silica fume/SBS composite-modified asphalt mortar. Advances in Materials Science and Engineering. https://doi.org/10.1155/2018/1317436

    Article  Google Scholar 

  21. Micaelo, R., Guerra, A., Quaresma, L., & Cidade, M. T. (2017). Study of the effect of filler on the fatigue behaviour of bitumen-filler mastics under DSR testing. Construction and Building Materials, 155, 228–238. https://doi.org/10.1016/j.conbuildmat.2017.08.066

    Article  Google Scholar 

  22. Luo, Y., Guo, P., Gao, J., Meng, J., & Dai, Y. (2022). Application of Design-Expert response surface methodology for the prediction of rejuvenated asphalt fatigue life. Journal of Cleaner Production, 379, 134427. https://doi.org/10.1016/j.jclepro.2022.134427

    Article  Google Scholar 

  23. Sun, Y., Fang, C., Wang, J., Yuan, X., & Fan, D. (2018). Method of fatigue-life prediction for an asphalt mixture based on the plateau value of permanent deformation ratio. Materials, 11(5), 722. https://doi.org/10.3390/ma11050722

    Article  Google Scholar 

  24. Lv, S., Wang, Z., Zhu, X., Yuan, J., & Peng, X. (2023). Research on strength and fatigue properties of asphalt mixture with different gradation curves. Construction and Building Materials, 364, 129872. https://doi.org/10.1016/j.conbuildmat.2022.129872

    Article  Google Scholar 

  25. Zheng, M., Li, P., Yang, J., Li, H., Qiu, Y., & Zhang, Z. (2017). Fatigue life prediction of high modulus asphalt concrete based on the local stress-strain method. Applied Sciences, 7(3), 305. https://doi.org/10.3390/app7030305

    Article  Google Scholar 

  26. White, G. (2020). Incorporating binder type into asphalt fatigue life characterisation of airport pavement surfaces. International Journal of Pavement Research and Technology, 13, 40–47. https://doi.org/10.1007/s42947-019-0083-3

    Article  Google Scholar 

  27. Liu, C., Du, J., Wu, C., Liu, K., & Jiang, K. (2022). Low-temperature crack resistance of wood tar-based rejuvenated asphalt based on viscoelastic rheological method. International Journal of Pavement Research and Technology, 15(6), 1340–1353. https://doi.org/10.1007/s42947-021-00092-4.3

    Article  Google Scholar 

  28. Hintz, C., & Bahia, H. (2013). Understanding mechanisms leading to asphalt binder fatigue in the dynamic shear rheometer. Road Materials and Pavement Design, 14(sup2), 231–251. https://doi.org/10.1080/14680629.2013.818818

    Article  Google Scholar 

  29. Zhang, X. (2021). Study on preparation and performance of wood tar-based rejuvenated asphalt. Central South University of Forestry & Technology. https://doi.org/10.27662/d.cnki.gznlc.2021.000382

    Article  Google Scholar 

  30. Shadman, M., & Ziari, H. (2017). Laboratory evaluation of fatigue life characteristics of polymer modified porous asphalt: A dissipated energy approach. Construction and Building Materials, 138, 434–440. https://doi.org/10.1016/j.conbuildmat.2017.02.043

    Article  Google Scholar 

  31. Nan, H., Sun, Y., Chen, J., & Gong, M. (2022). Investigation of fatigue performance of asphalt binders containing SBS and CR through TS and LAS tests. Construction and Building Materials, 361, 129651. https://doi.org/10.1016/j.conbuildmat.2022.129651

    Article  Google Scholar 

  32. Shen, S., & Carpenter, S. H. (2005). Application of the dissipated energy concept in fatigue endurance limit testing. Transportation Research Record, 1929(1), 165–173. https://doi.org/10.1177/0361198105192900120

    Article  Google Scholar 

  33. Li, Q., Meng, Y., Li, N., Li, G., & Wang, J. (2022). Characterization of fatigue performance of the warm-mix recycled asphalt mixture using different models. Fatigue & Fracture of Engineering Materials & Structures, 45(3), 770–782. https://doi.org/10.1111/ffe.13632

    Article  Google Scholar 

  34. Lv, S., Peng, X., Liu, C., Ge, D., Tang, M., & Zheng, J. (2020). Laboratory investigation of fatigue parameters characteristics of aging asphalt mixtures: A dissipated energy approach. Construction and Building Materials, 230, 116972. https://doi.org/10.1016/j.conbuildmat.2019.116972

    Article  Google Scholar 

  35. Cao, Z., Chen, M., Liu, Z., He, B., Yu, J., & Xue, L. (2019). Effect of different rejuvenators on the rheological properties of aged sbs modified bitumen in long term aging. Construction and Building Materials, 215, 709–717. https://doi.org/10.1016/j.conbuildmat.2019.04.257

    Article  Google Scholar 

  36. Liu, J., Liu, Q., Wang, S., Zhang, X., Xiao, C., & Yu, B. (2021). Molecular dynamics evaluation of activation mechanism of rejuvenator in reclaimed asphalt pavement (RAP) binder. Construction and Building Materials, 298, 123898. https://doi.org/10.1016/j.conbuildmat.2021.123898

    Article  Google Scholar 

  37. Ishaq, M. A., & Giustozzi, F. (2020). Rejuvenator effectiveness in reducing moisture and freeze/thaw damage on long-term performance of 20% RAP asphalt mixes: An Australian case study. Case Studies in Construction Materials, 13, e00454. https://doi.org/10.1016/j.cscm.2020.e00454

    Article  Google Scholar 

  38. Wang, Q., Ye, Q., Luo, J., Xie, C., Liu, H., Liu, J., & Qin, M. (2022). Effects of tung oil composite regenerating agent on rheological properties and microstructures of reclaimed asphalt binder. Materials, 15(9), 3197. https://doi.org/10.3390/ma15093197

    Article  Google Scholar 

  39. Sousa, J. B., Harvey, J., Painter, L., Deacon, J. A., & Monismith, C. L. (1991). Evaluation of laboratory procedures for comapcting asphalt-aggregate mixtures (No. SHRP-A/UWP-91-523). http://onlinepubs.trb.org/onlinepubs/shrp/SHRP-91-523.pdf.

  40. Sun, D., Liu, F., Lin, T., & Cao, L. (2016). Fatigue life evaluation method and prediction equation for asphalt mortars. Journal of Building Materials, 19(1), 100–104. https://doi.org/10.3969/j.issn.1001-7372.2016.01.002

    Article  Google Scholar 

Download references

Funding

This work was supported by the Standardization Project of Hunan Province, China [Grant No. 2022-11-43], the Changsha Natural Science Foundation Project, China [Grant No. kq2202275] and the Science and Technology Innovation Program of Hunan Province, China [Grant No. 2020RC4049]. The brand names mentioned in this paper were for the reader’s convenience only and this does not suggest any endorsement by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kefei Liu or Kang Jiang.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, Q., Liu, K. et al. Fatigue Performance Analysis and Life Prediction of Wood Tar-Based Rejuvenated Asphalt. Int. J. Pavement Res. Technol. (2023). https://doi.org/10.1007/s42947-023-00315-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42947-023-00315-w

Keywords

Navigation