Skip to main content
Log in

Utilizing Scrap Tyre in Unbound Pavement Layers: A State-of-the-Art Review

  • Review
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Escalating scrap tyre generation and its disposal have been of concern as these cause detrimental impacts on the environment. Being a non-biodegradable waste, the possible avenues to discard scrap tyres are limited. This study selectively reviewed published literature to reveal utilization prospects of scrap tyre for the construction of unbound layers of pavement. By substituting conventional materials with scrap tyres, the cost of construction could possibly be reduced. In an attempt, this article reviews the types of soil/aggregates substituted with tyre crumb, size of tyre crumb and substitution amount. Also, engineering properties and their response to the accumulation of tyre crumb are presented. In a nutshell, compaction and strength characteristics worsen at different rates depending on the size of the tyre crumb and soil/aggregate type. On the contrary, hydraulic conductivity and resistance to vibratory forces improved. This kind of cost-effective construction practices benefit economically deprived nations that struggle due to budget constraints pertaining to road infrastructure development and waste disposal. This review would help researchers and practitioners to devise stringent protocols and regularize the usage of scrap tyres in road construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Material

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Ruwona, W., Danha, G., & Muzenda, E. (2019). A review on material and energy recovery from waste tyres. Procedia Manufacturing, 35, 216–222. https://doi.org/10.1016/j.promfg.2019.05.029

    Article  Google Scholar 

  2. Gomes, T. S., Neto, G. R., Salles, A. C. N. D., Visconte, L. L. Y., Petrillo, E. B. A. V. P. A., & Felice, F. D. (2019). End-of-life tire destination from a life cycle assessment perspective. New Frontiers On Life Cycle Assessment—Theory and Application, 1, 1–15.

    Google Scholar 

  3. Liu, L., Cai, G., Zhang, J., Liu, X., & Liu, K. (2020). Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review. Renewable and Sustainable Energy Reviews, 126, 109831. https://doi.org/10.1016/j.rser.2020.109831

    Article  Google Scholar 

  4. Cetin, A. (2013). Effects of crumb rubber size and concentration on performance of porous asphalt mixtures. International Journal of Polymer Science, 2013, 789612. https://doi.org/10.1155/2013/789612

    Article  Google Scholar 

  5. Sharma, V. K., Fortuna, F., Mincarini, M., Berillo, M., & Cornacchia, G. (2000). Disposal of waste tyres for energy recovery and safe environment. Applied Energy, 65(1), 381–394. https://doi.org/10.1016/S0306-2619(99)00085-9

    Article  Google Scholar 

  6. Cerminara, G., & Cossu, R. (2018). 1.2—Waste input to landfills. In R. Cossu & R. Stegmann (Eds.), Solid waste landfilling (pp. 15–39). Elsevier.

    Chapter  Google Scholar 

  7. Lee, J. H., Salgado, R., Bernal, A., & Lovell, C. W. (1999). Shredded tires and rubber-sand as lightweight backfill. Journal of Geotechnical and Geoenvironmental Engineering, 125(2), 132–141. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132)

    Article  Google Scholar 

  8. Mohajerani, A., et al. (2020). Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resources, Conservation and Recycling, 155, 104679. https://doi.org/10.1016/j.resconrec.2020.104679

    Article  Google Scholar 

  9. Fazli, A., Rodrigue, D. (2020). Recycling waste tires into ground tire rubber (GTR)/rubber compounds: A review. Journal of Composites Science, 4(3), 103. https://www.mdpi.com/2504-477X/4/3/103

  10. Mmereki, D., Machola, B., & Mokokwe, K. (2019). Status of waste tires and management practice in Botswana. Journal of the Air and Waste Management Association, 69(10), 1230–1246. https://doi.org/10.1080/10962247.2017.1279696

    Article  Google Scholar 

  11. Oikonomou, N., & Mavridou, S. (2009). 9—The use of waste tyre rubber in civil engineering works. In J. M. Khatib (Ed.), Sustainability of construction materials (pp. 213–238). Woodhead Publishing.

    Chapter  Google Scholar 

  12. Promputthangkoon, P., & Karnchanachetanee, B. (2013). Geomaterial prepared from waste tyres, soil and cement. Procedia—Social and Behavioral Sciences, 91, 421–428. https://doi.org/10.1016/j.sbspro.2013.08.439

    Article  Google Scholar 

  13. ABS. (2022). Motor Vehicle Census, Australian Bureau of Statistics. http://www.ausstats.abs.gov.au/ausstats/subscriber.nsf/0/F19B5D476FA8A3A6CA257D240011E088/$File/93090_31%20jan%202014.pdf. Accessed 25 Jan 2022

  14. User Guidelines for Waste and Byproduct Materials in Pavement Construction. Federal Highway Administration Research and Technology, FHWA-RD-97-148, 2016. [Online]. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/st1.cfm

  15. Gigli, S., Landi, D., & Germani, M. (2019). Cost-benefit analysis of a circular economy project: a study on a recycling system for end-of-life tyres. Journal of Cleaner Production, 229, 680–694. https://doi.org/10.1016/j.jclepro.2019.03.223

    Article  Google Scholar 

  16. Munnoli, P. M., Sheikh, S., Mir, T., Kesavan, V., Jha, R. (2013). Utilization of rubber tyre waste in subgrade soil. In: 2013 IEEE global humanitarian technology conference: south asia satellite (GHTC-SAS), pp. 330–333. https://doi.org/10.1109/GHTC-SAS.2013.6629940.

  17. Morin, J. E., Williams, D. E., & Farris, R. J. (2002). A novel method to recycle scrap tires: High-pressure high-temperature sintering. Rubber Chemistry and Technology, 75(5), 955–968. https://doi.org/10.5254/1.3547695

    Article  Google Scholar 

  18. Baker, D., Hendy, R. (2005). Planning for sustainable construction aggregate resources in Australia. In: QUT Research Week, Brisbane, Australia.

  19. ASTM D6270. (1998). Standard practice for use of scrap tires in civil engineering applications. ASTM International.

    Google Scholar 

  20. Post-consumer tyre materials and applications, C. W. Agreement (2002).

  21. Shalaby, A., & Khan, R. A. (2005). Design of unsurfaced roads constructed with large-size shredded rubber tires: A case study. Resources, Conservation and Recycling, 44(4), 318–332. https://doi.org/10.1016/j.resconrec.2004.12.004

    Article  Google Scholar 

  22. Cecich, V., Gonzales, L., Hoisaeter, A., Williams, J., & Reddy, K. (1996). Use of shredded tires as lightweight backfill material for retaining structures. Waste Management and Research, 14(5), 433–451. https://doi.org/10.1006/wmre.1996.0043

    Article  Google Scholar 

  23. Speir, R. H., & Witczak, M. W. (1996). Use of shredded rubber in unbound granular flexible pavement layers. Transportation Research Record, 1547(1), 96–106. https://doi.org/10.1177/0361198196154700114

    Article  Google Scholar 

  24. Moo-Young, H., Sellasie, K., Zeroka, D., & Sabnis, G. (2003). Physical and chemical properties of recycled tire shreds for use in construction. Journal of Environmental Engineering, 129(10), 921–929. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:10(921)

    Article  Google Scholar 

  25. Huang, Y., Bird, R. N., & Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52, 58–73.

    Article  Google Scholar 

  26. Ross, D. E. (2019). Use of waste tyres in a circular economy. Waste Management and Research, 38(1), 1–3. https://doi.org/10.1177/0734242X19895697

    Article  Google Scholar 

  27. Barišić, I., Zvonarić, M., Grubeša, I. N., & Šurdonja, S. (2021). Recycling waste rubber tyres in road construction. Archives of Civil Engineering, 67(1), 499–512. https://doi.org/10.24425/ace.2021.136485

    Article  Google Scholar 

  28. Signes, C. H., Fernández, P. M., Perallón, E. M., & Franco, R. I. (2015). Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers. Materials and Structures, 48(12), 3847–3861. https://doi.org/10.1617/s11527-014-0443-z

    Article  Google Scholar 

  29. Yadav, J. S., & Tiwari, S. K. (2017). Effect of waste rubber fibres on the geotechnical properties of clay stabilized with cement. Applied Clay Science, 149, 97–110. https://doi.org/10.1016/j.clay.2017.07.037

    Article  Google Scholar 

  30. Moghaddas, T. S. N., & Norouzi, A. H. (2015). Application of waste rubber to reduce the settlement of road embankment. Geomechanics and Engineering. https://doi.org/10.12989/GAE.2015.9.2.219

    Article  Google Scholar 

  31. Ahmed, I. (1993). Laboratory study of properties of rubber-soils. Purdue University.

    Book  Google Scholar 

  32. Singh, S., Nimmo, W., Gibbs, B. M., & Williams, P. T. (2009). Waste tyre rubber as a secondary fuel for power plants. Fuel, 88(12), 2473–2480. https://doi.org/10.1016/j.fuel.2009.02.026

    Article  Google Scholar 

  33. Thomas, B. S., & Gupta, R. C. (2016). Properties of high strength concrete containing scrap tire rubber. Journal of Cleaner Production, 113, 86–92. https://doi.org/10.1016/j.jclepro.2015.11.019

    Article  Google Scholar 

  34. Eldin, N. N., & Senouci, A. B. (1992). Use of Scrap Tires in Road Construction. Journal of Construction Engineering and Management, 118(3), 561–576. https://doi.org/10.1061/(ASCE)0733-9364(1992)118:3(561)

    Article  Google Scholar 

  35. Ecoflex. E Wall by Ecoflex International. http://www.ecoflex.com.au/e-wall.html. Accessed 25 Jan 2022

  36. Perkins, L., Royal, A. C. D., Jefferson, I., & Hills, C. D. (2021). The use of recycled and secondary aggregates to achieve a circular economy within geotechnical engineering. Geotechnics, 1(2), 416–438. https://www.mdpi.com/2673-7094/1/2/20.

  37. Fazli, A., & Rodrigue, D. (2020). Waste rubber recycling: A review on the evolution and properties of thermoplastic elastomers. Materials, 13(3), 782. https://www.mdpi.com/1996-1944/13/3/782.

  38. Humphrey, D., & Blumenthal, M. (2010). The use of tire-derived aggregate in road construction applications. In Green Streets and Highways 2010 (pp. 299–313).

  39. Salgado, R., Yoon, S., & Zia Siddiki, N. (2003). Construction of tire shreds test embankment, Joint transportation research program, vol. Technical Report N8: FHWA/IN/JTRP-2002/35. http://docs.lib.purdue.edu/jtrp/42/. Accessed 24 Jan 2022

  40. Bingham. J. Yearning rubber, roads & bridges. www.roadsbridges.com/yearning-rubber. Accessed 24 Jan 2022

  41. Dickson, T. H., Dwyer, D. F., & Humphrey, D. N. (2001). Prototype tire-shred embankment construction. Transportation Research Record, 1755(1), 160–167. https://doi.org/10.3141/1755-17

    Article  Google Scholar 

  42. Shalaby, A., & Khan, R. A. (2002). Temperature monitoring and compressibility measurement of a tire shred embankment: Winnipeg, Manitoba, Canada. Transportation Research Record, 1808(1), 67–75. https://doi.org/10.3141/1808-08

    Article  Google Scholar 

  43. Wolfe, S. L., Humphrey, D. N., & Wetzel, E. A. (2004). Development of tire shred underlayment to reduce groundborne vibration from LRT track. In Geotechnical engineering for transportation projects (pp. 750–759).

  44. Yoon, S., Prezzi, M., Siddiki, N. Z., & Kim, B. (2006). Construction of a test embankment using a sand–tire shred mixture as fill material. Waste Management, 26(9), 1033–1044. https://doi.org/10.1016/j.wasman.2005.10.009

    Article  Google Scholar 

  45. Mills, B., & McGinn, J. (2008). Recycled tires as lightweight fill. In Recycled materials and recycling processes for sustainable infrastructure session of the 2008 annual conference of the transportation association of Canada, Toronto, Ontario

  46. R. O. P. Limited. (1998). Shredded tyre tests, vol. 7.

  47. Mackenzie, C., & Saarenketo, T. (2003). The B871 tyre bale project. The use of recycled tyre bales in a lightweight road embankment over peat. Roadscanners, Rovaniemi, Finland.

  48. Saberian, M., & Li, J. (2019). Long-term permanent deformation behaviour of recycled concrete aggregate with addition of crumb rubber in base and sub-base applications. Soil Dynamics and Earthquake Engineering, 121, 436–441. https://doi.org/10.1016/j.soildyn.2019.03.029

    Article  Google Scholar 

  49. Saberian, M., Li, J., Boroujeni, M., Law, D., & Li, C.-Q. (2020). Application of demolition wastes mixed with crushed glass and crumb rubber in pavement base/subbase. Resources, Conservation and Recycling, 156, 104722. https://doi.org/10.1016/j.resconrec.2020.104722

    Article  Google Scholar 

  50. Saberian, M., Li, J., Perera, S. T. A. M., Ren, G., Roychand, R., & Tokhi, H. (2020). An experimental study on the shear behaviour of recycled concrete aggregate incorporating recycled tyre waste. Construction and Building Materials, 264, 120266. https://doi.org/10.1016/j.conbuildmat.2020.120266

    Article  Google Scholar 

  51. Saberian, M., Li, J., Perera, S. T. A. M., Zhou, A., Roychand, R., & Ren, G. (2021). Large-scale direct shear testing of waste crushed rock reinforced with waste rubber as pavement base/subbase materials. Transportation Geotechnics, 28, 100546. https://doi.org/10.1016/j.trgeo.2021.100546

    Article  Google Scholar 

  52. Arulrajah, A., Mohammadinia, A., Maghool, F., & Horpibulsuk, S. (2019). Tyre derived aggregates and waste rock blends: Resilient moduli characteristics. Construction and Building Materials, 201, 207–217. https://doi.org/10.1016/j.conbuildmat.2018.12.189

    Article  Google Scholar 

  53. Gordan, B., & Adnan, A. (2015). Strength performance based on flexibility from laterite soil using tire powder and micro silica. Journal of Materials, 2015, 830903. https://doi.org/10.1155/2015/830903

    Article  Google Scholar 

  54. Signes, C. H., Garzón-Roca, J., Fernández, P. M., de la Torre, M. E. G., & Franco, R. I. (2016). Swelling potential reduction of Spanish argillaceous marlstone Facies Tap soil through the addition of crumb rubber particles from scrap tyres. Applied Clay Science, 132–133, 768–773. https://doi.org/10.1016/j.clay.2016.07.027

    Article  Google Scholar 

  55. Priyadarshee, A., Gupta, D., Kumar, V., & Sharma, V. (2015). Comparative study on performance of tire crumbles with Fly Ash and Kaolin Clay. International Journal of Geosynthetics and Ground Engineering, 1(4), 38. https://doi.org/10.1007/s40891-015-0033-3

    Article  Google Scholar 

  56. Dunham-Friel, J., & Carraro, J. A. H. (2014). Effects of compaction effort, inclusion stiffness, and rubber size on the shear strength and stiffness of expansive soil-rubber (ESR) mixtures. In Geo-Congress 2014 technical papers (pp. 3635–3644).

  57. Srivastava, A., Pandey, S., & Rana, J. (2014). Use of shredded tyre waste in improving the geotechnical properties of expansive black cotton soil. Geomechanics and Geoengineering, 9(4), 303–311. https://doi.org/10.1080/17486025.2014.902121

    Article  Google Scholar 

  58. BS 1377–4. (1990). Methods of test for—Soils for civil engineering purposes—Part 4 Compaction-related tests. British Standards Institution.

    Google Scholar 

  59. Anas, I., Naser, A. G. A., Akram, A. M., & Damanhuri, J. (2007). Stabilization of highway embankment using stabilized cohesive frictional soil with shredded scrap tire. Esteem Academic Journal, 3, 101–111. https://ir.uitm.edu.my/id/eprint/14858.

  60. Sheikh, M. N., Mashiri, M. S., Vinod, J. S., & Tsang, H.-H. (2013). Shear and compressibility behavior of sand-tire crumb mixtures. Journal of Materials in Civil Engineering, 25(10), 1366–1374. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000696

    Article  Google Scholar 

  61. Foose, G. J., Benson, C. H., & Bosscher, P. J. (1996). Sand reinforced with shredded waste tires. Journal of Geotechnical Engineering, 122(9), 760–767. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(760)

    Article  Google Scholar 

  62. Ghazavi, M., & Sakhi, M. A. (2005). Influence of optimized tire shreds on shear strength parameters of sand. International Journal of Geomechanics, 5(1), 58–65. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:1(58)

    Article  Google Scholar 

  63. Li, J., Saberian, M., & Nguyen, B. T. (2018). Effect of crumb rubber on the mechanical properties of crushed recycled pavement materials. Journal of Environmental Management, 218, 291–299. https://doi.org/10.1016/j.jenvman.2018.04.062

    Article  Google Scholar 

  64. Saberian, M., Li, J., Nguyen, B., & Wang, G. (2018). Permanent deformation behaviour of pavement base and subbase containing recycle concrete aggregate, coarse and fine crumb rubber. Construction and Building Materials, 178, 51–58. https://doi.org/10.1016/j.conbuildmat.2018.05.107

    Article  Google Scholar 

  65. Tasalloti, A., Chiaro, G., Murali, A., Banasiak, L., Palermo, A., Granello, G. (2021). Recycling of end-of-life tires (ELTs) for sustainable geotechnical applications: A New Zealand perspective. Applied Sciences, 11(17), 7824. https://www.mdpi.com/2076-3417/11/17/7824.

  66. ORN31. (1993). A guide to the structural design of bitumen surfaced roads in tropical and sub-tropical countries. Transport Research Laboratory.

    Google Scholar 

  67. Anburuvel, A. (2021). Crushed stone partially substituted with shredded-waste tyres of motorcycles for low-volume road base construction: A feasibility study in Sri Lanka. Innovative Infrastructure Solutions, 7(1), 123. https://doi.org/10.1007/s41062-021-00721-8

    Article  Google Scholar 

  68. Zvonarić, M., Barišić, I., Dokšanović, T., & Zagvozda, M. (2021). Preliminary research on waste rubber application in cement bound base layer. IOP Conference Series: Materials Science and Engineering, 1202(1), 012047. https://doi.org/10.1088/1757-899x/1202/1/012047

    Article  Google Scholar 

  69. ASTM D7181. (2020). Standard test method for consolidated drained triaxial compression test for soils. ASTM International.

    Google Scholar 

  70. Benda, C. C. (1995). Engineering properties of scrap tires used in geotechnical applications, Report No, 95-1. Vermont Agency of Transportation.

    Google Scholar 

  71. Masad, E., Taha, R., Ho, C., & Papagiannakis, A. (1996). Engineering properties of tire/soil mixtures as a lightweight fill material. Geotechnical Testing Journal. https://doi.org/10.1520/GTJ10355J

    Article  Google Scholar 

  72. ASTM D308. (2004). Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International.

    Google Scholar 

  73. Tiwari, S. K., Sharma, J. P., & Yadav, J. S. (2017). Geotechnical properties of dune sand-waste tires composite. Materials Today Proceedings, 4(9), 9851–9855. https://doi.org/10.1016/j.matpr.2017.06.280

    Article  Google Scholar 

  74. Saberian, M., & Li, J. (2018). Investigation of the mechanical properties and carbonation of construction and demolition materials together with rubber. Journal of Cleaner Production, 202, 553–560. https://doi.org/10.1016/j.jclepro.2018.08.183

    Article  Google Scholar 

  75. Saberian, M., & Li, J. (2021). Effect of freeze–thaw cycles on the resilient moduli and unconfined compressive strength of rubberized recycled concrete aggregate as pavement base/subbase. Transportation Geotechnics, 27, 100477. https://doi.org/10.1016/j.trgeo.2020.100477

    Article  Google Scholar 

  76. Saberian, M., Perera, S. T. A. M., Li, J., Zhu, J., & Wang, G. (2021). Effect of crushed glass on the shear behavior of recycled unbound granular aggregates incorporating crumb rubber. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-021-00073-7

    Article  Google Scholar 

  77. Saberian, M., Li, J., Nguyen, B. T., & Boroujeni, M. (2020). Experimental and analytical study of dynamic properties of UGM materials containing waste rubber. Soil Dynamics and Earthquake Engineering, 130, 105978. https://doi.org/10.1016/j.soildyn.2019.105978

    Article  Google Scholar 

  78. Edil, T. B. A. B., & Bosscher, P. J. (1992). Development of engineering criteria for shredded or whole tires in highway applications. Report No. WI 14–92. Department of Civil and Environmental Engineering, University of Wisconsin.

    Google Scholar 

  79. AASHTO Guide for Design of Pavement Structures. (1993). American Association of State Highway and Transportation Officials. DC, USA.

    Google Scholar 

  80. Saberian, M., Li, J., Nguyen, B. T., & Setunge, S. (2019). Estimating the resilient modulus of crushed recycled pavement materials containing crumb rubber using the Clegg impact value. Resources, Conservation and Recycling, 141, 301–307. https://doi.org/10.1016/j.resconrec.2018.10.042

    Article  Google Scholar 

  81. Saberian, M., Li, J., & Setunge, S. (2019). Evaluation of permanent deformation of a new pavement base and subbase containing unbound granular materials, crumb rubber and crushed glass. Journal of Cleaner Production, 230, 38–45. https://doi.org/10.1016/j.jclepro.2019.05.100

    Article  Google Scholar 

  82. Humphrey, D. N., & Manion, W. P. (1992). Properties of tire chips for lightweight fill. Soil Improvement and Geosynthetics, 2, 1344–1355.

    Google Scholar 

  83. Bresette, T. (1984). Used tire material as an alternative permeable aggregate, Report No. FHWA/CA/TL-84/07. Sacramento: Office of Transportation Laboratory, Department of Transportation.

    Google Scholar 

  84. Reddy, K. R., &Saichek, R. E. (1998). Characterization and performance assessment of shredded scrap tires as leachate drainage material in landfills. In 14th International conference on solid waste technology and management, Philadelpihia, USA

  85. Ahmed, I., & Lovell, C. W. (1993). Rubber soil as lightweight geomaterial (Vol. 1422, pp. 61–70). Washington: Transportation Research Record, National Research Council.

    Google Scholar 

  86. Petkovic, G., Engelsen, C. J., Håøya, A.-O., & Breedveld, G. (2004). Environmental impact from the use of recycled materials in road construction: Method for decision-making in Norway. Resources, Conservation and Recycling, 42(3), 249–264. https://doi.org/10.1016/j.resconrec.2004.04.004

    Article  Google Scholar 

  87. Sheehan, P. J., Warmerdam, J. M., Ogle, S., Humphrey, D. N., & Patenaude, S. M. (2006). Evaluating the risk to aquatic ecosystems posed by leachate from tire shred fill in roads using toxicity tests, toxicity identification evaluations, and groundwater modeling. Environmental Toxicology and Chemistry, 25(2), 400–411. https://doi.org/10.1897/04-532R2.1

    Article  Google Scholar 

  88. National Cooperative Highway Research Program. (2001). Appropriate use of waste and recycled materials in transportation industry, Project 4–21. Washington, DC: Transportation Research Board.

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AA: conceptualization, investigation, formal analysis, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Arulanantham Anburuvel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anburuvel, A. Utilizing Scrap Tyre in Unbound Pavement Layers: A State-of-the-Art Review. Int. J. Pavement Res. Technol. 16, 1375–1392 (2023). https://doi.org/10.1007/s42947-022-00203-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00203-9

Keywords

Navigation