Skip to main content
Log in

Enhancing the Storage Stability of SBS-Plastic Waste Modified Bitumen Using Reactive Elastomeric Terpolymer

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Polymer-modified bitumen (PMB) with a polymer content of up to 6% has a tendency of experiencing phase separation during hot temperature storage. This paper aims to minimize phase separation of a hybrid PMB that combines styrene butadiene styrene (SBS) and recycled linear low-density polyethylene (R-LLDPE). Reactive elastomeric terpolymer (RET) was used as a compatibilizer and its influence on storage stability was analysed via a series of physical, rheological and chemical tests to investigate phase separation. Softening point test shows that the optimum content of RET is 1%, with a higher content (> 1%) resulting in gel formation. RET increases polarity and reactivity, hence it has the capability of chemically cross-linking the polymers and bitumen. The addition of 0.2% polyphosphoric acid (PPA) improves the performance as it acts as a catalyst that facilitates the chemical reaction. The results from the frequency sweep test found that analysing the complex modulus, phase angle and plotting the black diagram is necessary since the phase separation index based on softening point can be a misleading indicator due to gelation. From the infrared spectroscopy analysis, a similar chemical composition between the top and bottom sections generates comparable absorption peaks and intensity. Finally, fluorescence microscopy indicates a continuous phase, hence displaying a homogeneous dispersion of polymers within the bitumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abd El-Rahman, A. M. M., El-Shafie, M., Mohammedy, M. M., & Abo-Shanab, Z. L. (2018). Enhancing the performance of blown asphalt binder using waste EVA copolymer (WEVA). Egyptian Journal of Petroleum, 27(4), 513–521.

    Article  Google Scholar 

  2. Ameri, M., Yeganeh, S., & Erfani Valipour, P. (2019). Experimental evaluation of fatigue resistance of asphalt mixtures containing waste elastomeric polymers. Construction and Building Materials, 198, 638–649.

    Article  Google Scholar 

  3. Costa, L. M. B., Silva, H. M. R. D., Peralta, J., & Oliveira, J. R. M. (2019). Using waste polymers as a reliable alternative for asphalt binder modification—Performance and morphological assessment. Construction and Building Materials, 198, 237–244.

    Article  Google Scholar 

  4. Fang, C., Liu, P., Yu, R., & Liu, X. (2014). Preparation process to affect stability in waste polyethylene-modified bitumen. Construction and Building Materials, 54, 320–325.

    Article  Google Scholar 

  5. Karahrodi, M. H., Jazani, O. M., Paran, S. M. R., Formela, K., & Saeb, M. R. (2017). Modification of thermal and rheological characteristics of bitumen by waste PET/GTR blends. Construction and Building Materials, 134, 157–166.

    Article  Google Scholar 

  6. Nouali, M., Ghorbel, E., & Derriche, Z. (2020). Phase separation and thermal degradation of plastic bag waste modified bitumen during high temperature storage. Construction and Building Materials, 239, 1–12.

    Article  Google Scholar 

  7. Yan, K., Xu, H., & You, L. (2015). Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene. Construction and Building Materials, 83, 143–149.

    Article  Google Scholar 

  8. Joohari, I. B., & Giustozzi, F. (2021). Waste tyres crumb rubber as a sustainability enhancer for polymer-modified and hybrid polymer-modified bitumen. International Journal of Pavement Engineering, 2, 1–15.

    Google Scholar 

  9. Nizamuddin, S., Boom, Y. J., & Giustozzi, F. (2021). Sustainable polymers from recycled waste plastics and their virgin counterparts as bitumen modifiers: A comprehensive review. Polymers, 13, 19.

    Article  Google Scholar 

  10. Rahman, M. T., Mohajerani, A., & Giustozzi, F. (2020). Recycling of waste materials for asphalt concrete and bitumen: A review. Materials, 13, 7.

    Article  Google Scholar 

  11. Abuaddous, M., Taamneh, M. M., & Rababah, S. R. (2020). The potential use of recycled polyethylene terephthalate (RPET) plastic waste in asphalt binder. International Journal of Pavement Research and Technology, 14(5), 579–587.

    Article  Google Scholar 

  12. Wang, H., Liu, X., Erkens, S., & Skarpas, A. (2020). Experimental characterization of storage stability of crumb rubber modified bitumen with warm-mix additives. Construction and Building Materials, 249, 2.

    Article  Google Scholar 

  13. Zhu, J., Balieu, R., & Wang, H. (2019). The use of solubility parameters and free energy theory for phase behaviour of polymer-modified bitumen: A review. Road Materials and Pavement Design, 2, 1–22.

    Google Scholar 

  14. Kryszewski, M., Galeski, A., & Martuscelli, E. (1984). Polymer Blends Processing, Morphology and Properties (Vol. 2). Springer.

    Google Scholar 

  15. Sienkiewicz, M., Janik, H., Borzędowska-Labuda, K., & Kucińska-Lipka, J. (2017). Environmentally friendly polymer-rubber composites obtained from waste tyres: A review. Journal of Cleaner Production, 147, 560–571.

    Article  Google Scholar 

  16. Karger-Kocsis, J., Mészáros, L., & Bárány, T. (2012). Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. Journal of Materials Science, 48(1), 1–38.

    Article  Google Scholar 

  17. Polacco, G., Stastna, J., Biondi, D., & Zanzotto, L. (2006). Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Current Opinion in Colloid & Interface Science, 11(4), 230–245.

    Article  Google Scholar 

  18. Polacco, G., Filippi, S., Merusi, F., & Stastna, G. (2015). A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Advances in Colloid and Interface Science, 224, 72–112.

    Article  Google Scholar 

  19. Jasso, M., Hampl, R., Vacin, O., Bakos, D., Stastna, J., & Zanzotto, L. (2015). Rheology of conventional asphalt modified with SBS, Elvaloy and polyphosphoric acid. Fuel Processing Technology, 140, 172–179.

    Article  Google Scholar 

  20. Ahmedzade, P. (2013). The investigation and comparison effects of SBS and SBS with new reactive terpolymer on the rheological properties of bitumen. Construction and Building Materials, 38, 285–291.

    Article  Google Scholar 

  21. Liu, L., Xiao, F., Zhang, H., & Amirkhanian, S. (2017). Rheological characteristics of alternative modified binders. Construction and Building Materials, 144, 442–450.

    Article  Google Scholar 

  22. Geckil, T., & Seloglu, M. (2018). Performance properties of asphalt modified with reactive terpolymer. Construction and Building Materials, 173, 262–271.

    Article  Google Scholar 

  23. Xu, C., Zhang, Z., Zhao, F., Liu, F., & Wang, J. (2019). Improving the performance of RET modified asphalt with the addition of polyurethane prepolymer (PUP). Construction and Building Materials, 206, 560–575.

    Article  Google Scholar 

  24. Geckil, T. (2019). Physical, chemical, microstructural and rheological properties of reactive terpolymer-modified bitumen. Materials, 12, 6.

    Article  Google Scholar 

  25. Singh, D., Ashish, P. K., Kataware, A., & Habal, A. (2017). Evaluating performance of PPA-and-Elvaloy-modified binder containing WMA additives and lime using MSCR and LAS tests. Journal of Materials in Civil Engineering, 29, 8.

    Article  Google Scholar 

  26. Gama, D. A., Yan, Y., Rodrigues, J. K. G., & Roque, R. (2018). Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance. Construction and Building Materials, 169, 522–529.

    Article  Google Scholar 

  27. Liu, S., Zhou, S., & Peng, A. (2020). Evaluation of polyphosphoric acid on the performance of polymer modified asphalt binders. Journal of Applied Polymer Science, 137, 34.

    Article  Google Scholar 

  28. Zhu, J., Lu, X., & Kringos, N. (2016). Experimental investigation on storage stability and phase separation behaviour of polymer-modified bitumen. International Journal of Pavement Engineering, 19(9), 832–841.

    Article  Google Scholar 

  29. Mahida, S., Shah, Y. U., & Sharma, S. (2021). Analysis of the influence of using waste polystyrene in virgin bitumen. International Journal of Pavement Research and Technology, 2, 1–14.

    Google Scholar 

  30. Airey, G. D. (2011). Use of black diagrams to identify inconsistencies in rheological data. Road Materials and Pavement Design, 3(4), 403–424.

    Article  Google Scholar 

  31. Xu, O., Xiao, F., Han, S., Amirkhanian, S. N., & Wang, Z. (2016). High temperature rheological properties of crumb rubber modified asphalt binders with various modifiers. Construction and Building Materials, 112, 49–58.

    Article  Google Scholar 

  32. D.W.C. D.A. Anderson, H.U. Bahia, R. Dogre, C.E. Antle, Binder characterization and evaluation. volume 3: physical characterization, SHRP-A-369, National Research Council, Washington, DC1994.

  33. Liu, J., Sun, Y., Wang, W., & Chen, J. (2017). Using the viscoelastic parameters to estimate the glass transition temperature of asphalt binders. Construction and Building Materials, 153, 908–917.

    Article  Google Scholar 

  34. Athira, P. K., Atul Narayan, S. P., Murali Krishnan, J., & Jain, P. K. (2020). Comparison of binder and mixture tests to characterize permanent deformation of elastomer and terpolymer modified binders. Construction and Building Materials, 264, 2.

    Article  Google Scholar 

  35. Chen, J. S. L., & M.C., Shiah, M.S. (2002). Asphalt modified by styrene-butadiene-styrene triblock copolymer: morphology and model. Journal of Materials in Civil Engineering, 14(3), 224–229.

    Article  Google Scholar 

  36. Xia, T., Qin, Y., Xu, J., Zhou, L., Chen, W., & Dai, J. (2018). Viscoelastic phase separation and crystalline-to-amorphous phase transition in bitumen/SBS/PE blends. Polymer, 155, 129–135.

    Article  Google Scholar 

  37. Xiao, F., Amirkhanian, S., Wang, H., & Hao, P. (2014). Rheological property investigations for polymer and polyphosphoric acid modified asphalt binders at high temperatures. Construction and Building Materials, 64, 316–323.

    Article  Google Scholar 

  38. Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82.

    Article  Google Scholar 

  39. Masson, J. F. (2008). Brief review of the chemistry of polyphosphoric acid (PPA) and bitumen. Energy & Fuels, 22(5), 3560–3560.

    Article  Google Scholar 

  40. Syroezhko, O. Y. B. A. M., Fedorov, V. V., & Gusarova, E. N. (2003). Modification of paving asphalts with sulfur. Russian Journal of Applied Chemistry, 76(3), 4913–5496.

    Article  Google Scholar 

  41. Nivitha, M. R., Prasad, E., & Krishnan, J. M. (2019). Transitions in unmodified and modified bitumen using FTIR spectroscopy. Materials and Structures, 52, 1.

    Article  Google Scholar 

  42. Keyf, S., Ismail, O., & Çorbacioğlu, B. D. (2007). Polymer-modified bitumen using ethylene terpolymers. Petroleum Science and Technology, 25(7), 915–923.

    Article  Google Scholar 

  43. Keyf, S. (2013). The modification of bitumen with reactive ethylene terpolymer, styrene butadiene styrene and variable amounts of ethylene vinyl acetate. Research on Chemical Intermediates, 41(3), 1485–1497.

    Article  Google Scholar 

  44. Cuciniello, G., Leandri, P., Losa, M., & Airey, G. (2020). Effects of ageing on the damage tolerance of polymer modified bitumens investigated through the LAS test and fluorescence microscopy. International Journal of Pavement Engineering, 2, 1–12.

    Google Scholar 

  45. Mirwald, J., Hofko, B., & Grothe, H. (2020). Utilising fluorescence spectroscopy and optical microscopy to investigate bitumen long-term ageing. Road Materials and Pavement Design, 2, 1–14.

    Google Scholar 

  46. Sengoz, B., & Isikyakar, G. (2008). Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. Journal of Hazardous Materials, 150(2), 424–432.

    Article  Google Scholar 

  47. Luo, Y., Zhang, Z., Zhang, H., Zhang, M., Zhang, K., & Zhao, Y. (2021). Performance optimization of high viscosity modified asphalt with SBS composite modifier and comparison of different high viscosity modified asphalts. International Journal of Pavement Research and Technology, 2, 1–13.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Skim Latihan Akademik Bumiputera (SLAB); Universiti Malaysia Perlis (UniMAP); and the Ministry of Higher Education of Malaysia.

Funding

This work was supported by Skim Latihan Akademik Bumiputera (SLAB); Universiti Malaysia Perlis (UniMAP); and the Ministry of Higher Education of Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilya Binti Joohari or Filippo Giustozzi.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the author(s).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joohari, I.B., Maniam, S. & Giustozzi, F. Enhancing the Storage Stability of SBS-Plastic Waste Modified Bitumen Using Reactive Elastomeric Terpolymer. Int. J. Pavement Res. Technol. 16, 304–318 (2023). https://doi.org/10.1007/s42947-021-00132-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00132-z

Keywords

Navigation