Skip to main content
Log in

A Comparative Study of Different Complex Shear Modulus Master Curve Techniques for Sulfur Extended Asphalt Modified with Recycled Polyethylene Waste

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

This study aims to compare different historical predictive master curve techniques which model the rheological properties of asphalt binders in terms of dynamic shear modulus (G*). The investigated models are the Sigmoidal model, Generalized Logistic Sigmoidal model (GLS), Christensen-Anderson model (CA), and Christensen-Anderson and Marasteanu (CAM) model. These models are applied on virgin and sulfur-extended asphalts (SEA). Two types of recycled plastic waste; recycled high-density polyethylene (RHDPE) and recycled low-density polyethylene (RLDPE) are used to modify both the virgin asphalt and SEA. The investigated models are employed to describe the rheological viscoelastic characteristics of the different investigated binders at different aging conditions under the influence of different frequencies and temperatures based on dynamic mechanical analysis (DMA). The results of this study show that the performance of the investigated models is affected by binder modification and aging conditions. The G* of virgin and sulfur asphalts (either modified or virgin) can be satisfactorily represented by all models investigated in this study under original and aged conditions. The most accurate model is the generalized modified sigmoidal model followed by the Sigmoidal model, the CAM Model, and CA Model, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Shaw, M. T., & MacKnight, W. J. (2018). Introduction to polymer viscoelasticity (4th ed.). John Wiley & Sons.

    Google Scholar 

  2. Yusoff, N. I. M., Shaw, M. T., & Airey, G. D. (2011). Modelling the linear viscoelastic rheological properties of bituminous binders. Construction and Building Materials, 25(5), 2171–2189.

    Article  Google Scholar 

  3. Zeng, M., Bahia, H. U., Zhai, H., Anderson, M. R., & Turner, P. (2001). Rheological modeling of modified asphalt binders and mixtures (with discussion). Journal of the Association of Asphalt Paving Technologists, 70, 403–441.

    Google Scholar 

  4. Pw, H. E. R. H., Colo, S. M., Hedman, K., & Rudolph, B. S. (1999). Dynamic shear rheometers pave the way for quality asphalt binders. American laboratory (Fairfield), 31(15), 16–21.

    Google Scholar 

  5. Pellinen, T. K., & Witczak, M. W. (2002). Stress dependent master curve construction for dynamic (complex) modulus (with discussion). Journal of the Association of Asphalt Paving Technologists, 71, 281–309.

    Google Scholar 

  6. Stastna, J., Zanzotto, L., & Berti, J. (1997). How good are some rheological models of dynamic material functions of asphalt. Journal of the Association of Asphalt Paving Technologists, 66, 458–485.

    Google Scholar 

  7. El-Badawy, S., Abd El-Hakim, R., & Awed, A. (2018). Comparing artificial neural networks with regression models for Hot-Mix asphalt dynamic modulus prediction. Journal of Materials in Civil Engineering, 30(7), 04018128.

    Article  Google Scholar 

  8. Khattab, A. M., El-Badawy, S. M., & Elmwafi, M. (2014). Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia. Construction and Building Materials, 64, 360–369.

    Article  Google Scholar 

  9. El-Badawy, S., Bayomy, F., & Awed, A. (2012). Performance of MEPDG dynamic modulus predictive models for asphalt concrete mixtures: Local calibration for Idaho. Journal of Materials in Civil Engineering, 24(11), 1412–1421.

    Article  Google Scholar 

  10. El-Badawy, S., & Abd El-Hakim, R. (2017). Application of artificial neural networks for Hot Mix asphalt dynamic modulus (E*) prediction. International Congress and Exhibition" Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology" (pp. 185–202). Springer.

    Google Scholar 

  11. Witczak, M., El-Basyouny, M., El-Badawy, S. (2007). Incorporation of the New (2005) E* Predictive Model in the MEPDG. NCHRP 1–40 DFinal Report. Arizona State University.

  12. Darter, M. I., Mallela, J., Titus-Glover, L., Rao, C., Larson, G., Gotlif, A., Von Quintus, H. L., Khazanovich, L., Witczak, M., & El-Basyouny, M. M. (2006). Changes to the “Mechanistic-Empirical Pavement Design Guide” software through version 0.900, July 2006. NCHRP research results digest 308. Transportation Research Board of the National Academies.

    Google Scholar 

  13. Khattab, A. M., El-Badawy, S. M., & Elmwafi, M. (2017). Comparison of Witczak NCHRP 1–40D and Hirsh dynamic modulus models based on different binder characterization methods: a case study. In: MATEC Web of Conferences, 2017. EDP Sciences, 120, 07003.

    Google Scholar 

  14. Christensen, D. W., & Anderson, D. A. (1992). Interpretation of dynamic mechanical test data for paving grade asphalt cements (with discussion). Journal of the Association of Asphalt Paving Technologists, 61, 67–116.

    Google Scholar 

  15. Marasteanu, M., & Anderson, D. (1999). Improved model for bitumen rheological characterization. Eurobitume workshop on performance related properties for bituminous binders (pp. 1–4). European Bitumen Association Brussels.

    Google Scholar 

  16. Pellinen, T. K., Witczak, M. W., & Bonaquist, R. F. (2004). Asphalt mix master curve construction using sigmoidal fitting function with non-linear least squares optimization. Paper presented at the Proceedings of 15th ASCE engineering mechanics conference. Columbia University.

    Google Scholar 

  17. Rowe, G., Baumgardner, G., & Sharrock, M. (2008). A generalized logistic function to describe the master curve stiffness properties of binder mastics and mixtures. 45th Petersen asphalt research conference. University of Wyoming.

    Google Scholar 

  18. Wen, Y., Guo, N., You, Z., Wang, L., & Tan, Y. (2018). Comparative evaluation of rheological properties and micromechanics of non-foamed and foamed asphalt mastic. Construction and Building Materials, 193, 654–664.

    Article  Google Scholar 

  19. Das, A. K., & Panda, M. (2017). Investigation on rheological performance of sulphur modified bitumen (SMB) binders. Construction and Building Materials, 149, 724–732.

    Article  Google Scholar 

  20. Lagos-Varas, M., Movilla-Quesada, D., Raposeiras, A., Arenas, J., Calzada-Pérez, M., Vega-Zamanillo, A., & Lastra-González, P. (2020). Influence of limestone filler on the rheological properties of bituminous mastics through susceptibility master curves. Construction and Building Materials, 231, 117126.

    Article  Google Scholar 

  21. Cheng, L., Yu, J., Zhao, Q., Wu, J., & Zhang, L. (2020). Chemical, rheological and aging characteristic properties of Xinjiang rock asphalt-modified bitumen. Construction and Building Materials, 240, 117908.

    Article  Google Scholar 

  22. Asgharzadeh, S. M., Tabatabaee, N., Naderi, K., & Partl, M. (2013). An empirical model for modified bituminous binder master curves. Materials and Structures, 46(9), 1459–1471.

    Article  Google Scholar 

  23. Stastna, J., Zanzotto, L., & Ho, K. (1994). Fractional complex modulus manifested in asphalts. Rheologica Acta, 33(4), 344–354.

    Article  Google Scholar 

  24. Rowe, G., Baumgardner, G., & Sharrock, M. (2009). Functional forms for master curve analysis of bituminous materials. Advanced testing and characterization of bituminous materials, two volume set (pp. 97–108). CRC Press.

    Google Scholar 

  25. Anderson, D.A., Christensen, D.W., Bahia, H.U., Dongre, R., Sharma, M., Antle, C.E., Button, J. (1994). Binder characterization and evaluation, volume 3: Physical characterization. Strategic Highway Research Program, National Research Council, Report No. SHRP-A-369, vol 3. Washington, DC.

  26. Sayegh, G. (1967). Viscoelastic properties of bituminous mixtures. In: Intl Conf Struct Design Asphalt Pvmts.

  27. Bonaquist, R., & Christensen, D. W. (2005). Practical procedure for developing dynamic modulus master curves for pavement structural design. Transportation Research Record, 1929(1), 208–217.

    Article  Google Scholar 

  28. Medani, T., & Huurman, M. (2003). Constructing the stiffness master curves for asphaltic mixes. Report 7–01–127–3. Delft University and Technology.

    Google Scholar 

  29. Medani, T., Huurman, M., Molenaar, A. (2004). On the computation of master curves for bituminous mixes. In: Proceedings of the 3rd asphalt and bitumen congress, Vienna, Austria, , May 2004. pp. 1–9.

  30. Biswas, K. G., & Pellinen, T. K. (2007). Practical methodology of determining the in situ dynamic (complex) moduli for engineering analysis. Journal of Materials in Civil Engineering, 19(6), 508–514.

    Article  Google Scholar 

  31. Lin, P., Yan, C., Huang, W., Li, Y., Zhou, L., Tang, N., Xiao, F., Zhang, Y., & Lv, Q. (2019). Rheological, chemical and aging characteristics of high content polymer modified asphalt. Construction and Building Materials, 207, 616–629.

    Article  Google Scholar 

  32. Ye, W., Jiang, W., Li, P., Yuan, D., Shan, J., & Xiao, J. (2019). Analysis of mechanism and time-temperature equivalent effects of asphalt binder in short-term aging. Construction and Building Materials, 215, 823–838.

    Article  Google Scholar 

  33. Cavalli, M. C., Zaumanis, M., Mazza, E., Partl, M. N., & Poulikakos, L. D. (2018). Effect of ageing on the mechanical and chemical properties of binder from RAP treated with bio-based rejuvenators. Composites Part B: Engineering, 141, 174–181.

    Article  Google Scholar 

  34. Gao, J., Wang, H., You, Z., & Hasan, M. R. M. (2018). Research on properties of bio-asphalt binders based on time and frequency sweep test. Construction and Building Materials, 160, 786–793.

    Article  Google Scholar 

  35. Olidis, C., Hein, D. (2004). Guide for the mechanistic-empirical design of new and rehabilitated pavement structures materials characterization: Is your agency ready. In: Annual Conference of the Transportation Association of Canada, Quebec City, Quebec.

  36. Kassem, H. A., Najjar, S. S., & Chehab, G. R. (2016). Probabilistic modeling of the inherent variability in the dynamic modulus master curve of asphalt concrete. Transportation Research Record, 2576(1), 60–71.

    Article  Google Scholar 

  37. Nobakht, M., & Sakhaeifar, M. S. (2018). Dynamic modulus and phase angle prediction of laboratory aged asphalt mixtures. Construction and Building Materials, 190, 740–751. https://doi.org/10.1016/j.conbuildmat.2018.09.160

    Article  Google Scholar 

  38. Rahman, A. S. M. A., Islam, M. R., & Tarefder, R. A. (2018). Assessment and modification of nationally-calibrated dynamic modulus predictive model for the implementation of Mechanistic-Empirical design. International Journal of Pavement Research and Technology, 11(5), 502–508. https://doi.org/10.1016/j.ijprt.2018.03.008

    Article  Google Scholar 

  39. Yusoff, N. I. M., Jakarni, F. M., Nguyen, V. H., Hainin, M. R., & Airey, G. D. (2013). Modelling the rheological properties of bituminous binders using mathematical equations. Construction and Building Materials, 40, 174–188.

    Article  Google Scholar 

  40. Al-Haddad, D. (2015). Construction of a complex shear modulus master curve for Iraqi asphalt binder using a modified sigmoidal fitting. International Journal of Science, Engineering and Technology Research, 4(4), 682–690.

    Google Scholar 

  41. Rowe, G. (2009). Phase angle determination and interrelationships within bituminous materials. In A. Loizos, M. Partl, A. Scarpas, & I. Al-Qadi (Eds.), 7th international RILEM symposium on advanced testing and characterization of bituminous materials, Book 1 (pp. 43–52). CRC Press, Taylor & Francis Group.

    Google Scholar 

  42. Kang, Y., Jin, R., Wu, Q., Pu, L., Song, M., Cheng, J., & Yu, P. (2016). Anhydrides-cured bimodal rubber-like epoxy asphalt composites: From thermosetting to quasi-thermosetting. Polymers, 8(4), e104.

    Article  Google Scholar 

  43. Tan, G., Wang, W., Cheng, Y., Wang, Y., & Zhu, Z. (2020). Master curve establishment and complex modulus evaluation of SBS-Modified Asphalt Mixture Reinforced with Basalt Fiber Based on Generalized Sigmoidal Model. Polymers, 12(7), e1586.

    Article  Google Scholar 

  44. Rongali, U. D., Swamy, A. K., & Jain, P. K. (2016). Effect of SBS and HDPH polymer on rheological properties of asphalt. Petroleum Science and Technology, 34(21), 1790–1796.

    Article  Google Scholar 

  45. Anderson, D. A., Christensen, D. W., & Bahia, H. (1991). Physical properties of asphalt cement and the development of performance-related specifications. Journal of the Association of Asphalt Paving Technologists, 60, 437–475.

    Google Scholar 

  46. Cholewińska, M., Iwański, M., & Mazurek, G. (2018). The impact of ageing on the bitumen stiffness modulus using the CAM model. Baltic Journal of Road and Bridge Engineering, 13(1), 34–39.

    Article  Google Scholar 

  47. Da Silva, L. S., de Camargo Forte, M. M., de Alencastro, V. L., & Cardozo, N. S. M. (2004). Study of rheological properties of pure and polymer-modified Brazilian asphalt binders. Journal of Materials Science, 39(2), 539–546.

    Article  Google Scholar 

  48. Asgharzadeh, S. M., Tabatabaee, N., Naderi, K., & Partl, M. N. (2015). Evaluation of rheological master curve models for bituminous binders. Materials and Structures, 48(1–2), 393–406.

    Article  Google Scholar 

  49. Li, X., Zofka, A., Marasteanu, M., & Clyne, T. R. (2006). Evaluation of field aging effects on asphalt binder properties. Road Materials and Pavement Design, 7(sup1), 57–73.

    Article  Google Scholar 

  50. Shan, L., Qi, X., Duan, X., Liu, S., & Chen, J. (2020). Effect of styrene-butadiene-styrene (SBS) on the rheological behavior of asphalt binders. Construction and Building Materials, 231, 117076.

    Article  Google Scholar 

  51. Ma, X., Chen, H., Gui, C., Xing, M., & Yang, P. (2019). Influence of the properties of an asphalt binder on the rheological performance of mastic. Construction and Building Materials, 227, 116659.

    Article  Google Scholar 

  52. Ji, J., Yao, H., Suo, Z., Zhang, H., Cao, D., You, Z., & Li, B. (2017). Rheological properties of modified coal tar pitches. Journal of Materials in Civil Engineering, 29(3), D4016002.

    Article  Google Scholar 

  53. Blasl, A., Khalili, M., Canon Falla, G., Oeser, M., Liu, P., & Wellner, F. (2019). Rheological characterisation and modelling of bitumen containing reclaimed components. International Journal of Pavement Engineering, 20(6), 638–648.

    Article  Google Scholar 

  54. Tran, N., & Hall, K. (2005). Evaluating the predictive equation in determining dynamic moduli of typical asphalt mixtures used in Arkansas. Journal of the Association of Asphalt Paving Technologists, 74, 1–17.

    Google Scholar 

  55. Baosheng, W., Van Maren, D., & Lingyun, L. (2008). Predictability of sediment transport in the Yellow River using selected transport formulas. International Journal of Sediment Research, 23(4), 283–298.

    Article  Google Scholar 

  56. Al-Mehthel, M., Al-Abdul Wahhab, H., Al-Idi, S.H., Baig, M.G. (2010). Sulfur-extended asphalt as a major outlet for sulfur that outperformed other asphalt mixes in the gulf. In: Sulfur World Symposium, Qatar.

  57. Eisa, M., Basiouny, M., & Elbasomy, O. (2019). Evaluating hot asphalt mixtures of poor quality aggregate with sulphur extended asphalt. Innovative Infrastructure Solutions, 4(1), e56.

    Article  Google Scholar 

  58. Strickland, D., Colange, J., Martin, M., & Deme, I. (2008). Performance properties of paving mixtures made with modified sulphur pellets. In Proceedings of the International ISAP Symposium on Asphalt Pavements and Environment, ISAP, Zurich, pp. 64–75.

  59. AASHTO T240. (2013). Standard method of test for effect of heat and air on a moving film of asphalt binder (rolling thin-film oven test). American Association of State and Highway Transportation Officials.

    Google Scholar 

  60. AASHTO R 28–12. (2009). Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). American Association of State and Highway Transportation Officials.

    Google Scholar 

  61. Airey, G. D. (1997). Rheological characteristics of polymer modified and aged bitumens. University of Nottingham.

    Google Scholar 

  62. Harrigan, E., Leahy, R., Youtcheff, J. (1994). Superpave manual of specifications, test methods and practices. SHRP-A-379. Strategic Highway Research Program.

  63. Rowe, G. M., & Sharrock, M. (2011). Alternate shift factor relationship for describing temperature dependency of viscoelastic behavior of asphalt materials. Transportation Research Record, 2207(1), 125–135.

    Article  Google Scholar 

  64. Goodrich, J.L. (1988). Asphalt and polymer modified asphalt properties related to the performance of asphalt concrete mixes (with discussion). In: Association of Asphalt Paving Technologists Proc. pp. 116–175.

  65. Airey, G. D., & Brown, S. F. (1998). Rheological performance of aged polymer modified bitumens. Journal of the Association of Asphalt Paving Technologists, 67, 66–100.

    Google Scholar 

  66. Olard, F., & Di Benedetto, H. (2003). General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Materials and Pavement Design, 4(2), 185–224.

    Google Scholar 

  67. Olard, F., Di Benedetto, H., Eckmann, B., & Triquigneaux, J.-P. (2003). Linear viscoelastic properties of bituminous binders and mixtures at low and intermediate temperatures. Road Materials and Pavement Design, 4(1), 77–107.

    Article  Google Scholar 

  68. Baek, C., & Lee, S. (2018). Laboratory Performance Evaluation of HMA Modified with various types and contents of polymer. Advances in Civil Engineering, 2018, e2437854. https://doi.org/10.1155/2018/2437854

    Article  Google Scholar 

  69. Christensen, D., Mensching, D., Rowe, G., Anderson, R.M., Hanz, A., Reinke, G., Anderson, D. (2019). Past, present, and future of asphalt binder rheological parameters: Synopsis of 2017 Technical Session 307 at the 96th Annual Meeting of the Transportation Research Board. Transportation Research Circular.

  70. Ramirez Cardona, D. A., Pouget, S., Di Benedetto, H., & Olard, F. (2015). Viscoelastic behaviour characterization of a gap-graded asphalt mixture with SBS polymer modified bitumen. Materials Research, 18(2), 373–381.

    Article  Google Scholar 

  71. Chatti, K., Kutay, M. E., Lajnef, N., Zaabar, I., Varma, S., & Lee, H. S. (2017). Enhanced analysis of falling weight deflectometer data for use with mechanistic-empirical flexible pavement design and analysis and recommendations for improvements to falling weight deflectometers. Federal Highway Administration.

    Google Scholar 

  72. Chen, J.-S., Liao, M.-C., & Tsai, H.-H. (2002). Evaluation and optimization of the engineering properties of polymer-modified asphalt. Practical Failure Analysis, 2(3), 75–83.

    Article  Google Scholar 

  73. Lesueur, D., Gerard, J. F., Claudy, P., Letoffe, J. M., Planche, J. P., & Martin, D. (1996). A structure-related model to describe asphalt linear viscoelasticity. Journal of Rheology, 40(5), 813–836.

    Article  Google Scholar 

  74. Christensen, D. W., Anderson, D. A., & Rowe, G. M. (2017). Relaxation spectra of asphalt binders and the Christensen-Anderson rheological model. Road Materials and Pavement Design, 18(sup1), 382–403.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by Assiut and Mansoura University, Egypt, in carrying out this research.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YMA: laboratory work, investigation, writing—original draft, resources. SME-B: conceptualization, methodology, visualization, validation, review and editing. E-SMAA: conceptualization, methodology. supervision of laboratory work, writing -original draft, review and editing.

Corresponding author

Correspondence to Yasser Alghrafy.

Ethics declarations

Conflict of Interest

There is no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghrafy, Y., El-Badawy, S. & Abd Alla, ES.M. A Comparative Study of Different Complex Shear Modulus Master Curve Techniques for Sulfur Extended Asphalt Modified with Recycled Polyethylene Waste. Int. J. Pavement Res. Technol. 15, 1023–1050 (2022). https://doi.org/10.1007/s42947-021-00070-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00070-w

Keywords

Navigation