Skip to main content
Log in

Review of reflective cracking in composite pavements

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Reflective cracking is identified as the main weakness of composite pavement in airfield and highways forcing the authorities to devote a large portion of their budget to rehabilitation and/or reconstruction of the existing composite pavements. It is, therefore, very important to have a better understanding of the reflective cracking mechanism to propose the most effective remedial solution(s), which corresponds to that mode of failure. Moreover, it is inevitable to develop a proper constitutive model, which can simulate the reflective cracking performance of the composite pavements as close as possible to the field conditions. The key step to develop such a model, would be therefore, identifying the current gaps within the literature to facilitate further developments and improvements in those areas. This paper is the outcome of a comprehensive literature review which was carried out as part of a current research project, to better understand the problem and identify the gaps within the literature. Three major gaps in terms of required laboratory testing setups, potential improvements in retardation approaches and development of proper numerical models have been identified by the authors which will be further discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Martin, Long live your airport’s pavement. (Ineco Transport and Engineering Consultancy, 2016), https://www.revistaitransporte.com/long-live-your-airports-pavement/. Accessed 31 December 2019.

  2. G. White, State of the art: Asphalt for airport pavement surfacing. Inter. J. Pave. Res. Tech. 11 (1) (2018) 77–98.

    MathSciNet  Google Scholar 

  3. S. Deilami, G. White, Review of reflective cracking mechanisms and mitigations for airport pavements, 28th Australian Road Research Board (ARRB) International Conference, Brisbane, Australia, 2018.

  4. A. Vanelstraete, L. Francken. Prevention of Reflective Cracking in Pavements. State-of-the-Art Report of RILEM Technical Committee 157 PRC, Systems to Prevent Reflective Cracking in Pavements. Report Number 18. Belgian Road Research Centre, Brussels, Belgium, 1997.

    Google Scholar 

  5. Y. Mehta, D. Cleary, A. Ali, Field cracking performance of airfield rigid pavement, J. Traffic Transp. Eng. 4 (4) (2017) 380–387.

    Google Scholar 

  6. E. B. Owusu-Antwi, L. Khazanovich, L. Titus-Glover, Mechanistic-based model for predicting reflective cracking in asphalt concrete-overlaid pavements, Transp. Res. Rec. 1629 (1) (1998) 234–241.

    Google Scholar 

  7. J. Cook, S. Ellis, Reflection cracking on airfield pavement-a design guide for assessment, treatment selection and future minimisation, 1st edn. Defence Estates, West Midlands, 2005.

    Google Scholar 

  8. C. Chen, Evaluation of Iowa asphalt pavement joint cracking, (Graduate Theses and Dissertations), Report Number 13925. Iowa State University, Ames, Iowa, 2014.

    Google Scholar 

  9. M. Elseifi, I. L. Al-Qadi, J. Greene, Mechanisms and Mitigation Strategies for Reflective Cracking in Rehabilitated Pavements (Transportation Research Board, 2015), http://onlinepubs.trb.org/Onlinepubs/webinars/150824.pdf. Accessed 31 December 2019.

  10. Y. Huang, Pavement Analysis and Design. 2nd edn. Pearson Education, New Jersey, 2004.

    Google Scholar 

  11. J. L. Beak, I. L. Al-Qadi, W. Butt, Reflective Cracking Control, 6th RILEM International Conference on Cracking in Pavements. Chicago, Illinois, 2008.

  12. A. Gautam, Tolerable Strains for HMA Overlays over Concrete Pavements, (Engineering Dissertations and Theses). Report Number 705. School of Engineering, University of Kansas, Kansas, 2009.

    Google Scholar 

  13. R. C. Williams, C. Chen, A. Buss, Reflective Crack Mitigation Guide for Flexible Pavements, InTrans Project Reports. Report Number IHRB Project TR-641. Iowa State University, Ames, Iowa, 2015.

    Google Scholar 

  14. F. L. Roberts, P. S. Kandhal, E. R. Brown, D. Lee, T. W. Kennedy, Hot-mix Asphalt Materials, Mixture Design, and Construction, 2nd edn. National Asphalt Pavement Association, Lanham, 1996.

    Google Scholar 

  15. M. Elseifi, R. Bandaru, Cost Effective Prevention of Reflective Cracking in Composite Pavements. Report Number FHWA/LA.11/478. Louisiana Transportation Research Center, Louisiana State University, Baton Rouge, LA, 2011.

    Google Scholar 

  16. D. Jones, B. Tsai, P. Ullidtz, R. Wu, J. Harvey, C. Monismith, Reflective Cracking Study: Second-Level Analysis Report. Pavement Research Center. Report Number UCPRC-RR-2007-09. University of California, Davis, California, 2007.

    Google Scholar 

  17. H. L. Von Quintus, J. Mallela, W. Weiss, S. Shen, R. L. Lytton, Techniques for Mitigation of Reflective Cracks. Airfield Asphalt Pavement Technology Program. Report Number AAPTP 05-04. Auburn University, Auburn, Alabama, 2009.

    Google Scholar 

  18. N. Dhakala, M. A. Elseifi, Z. Zhang, Mitigation strategies for reflection cracking in rehabilitated pavements — A synthesis, Inter. J. Pave. Res. Tech. 9 (3) (2016) 228–239.

    Google Scholar 

  19. S. J. Ellis, P.C. Langdale, J. Cook, Performance of Techniques to Minimise Reflection Cracking and Associated Developments in Pavement Investigation for Maintenance of Uk Military Airfields, Federal Aviation Administration Airport Technology Transfer Conference (May), Atlantic City, USA, 2002.

    Google Scholar 

  20. B. Yu, Q. Lu, J. Yang, Evaluation of anti-reflective cracking measures by laboratory test, Inter. J. Pavement Eng. 14 (6) (2013) 533–560.

    Google Scholar 

  21. A. Vanelstraete, L. Francken, Laboratory testing and numerical modelling of overlay systems on slabs, Third International RILEM Conference, Maastricht, Netherlands, 1996.

  22. J. W. Button, R. L. Lytton, Guidelines for Using Geosynthetics with Hot-Mix Asphalt Overlays to Reduce Reflective Cracking, Transp. Res. Rec. 2004 (1) (2007) 111–119.

    Google Scholar 

  23. S. Fallah, A. Khodaii, Evaluation of Parameters Affecting Reflection Cracking in Geogrid-Reinforced Overlay, J. Central South Univer. 22 (3) (2015) 1016–1025.

    Google Scholar 

  24. C. A. Monser, G. E. Montestruque, A. E. F. Silva, Evaluation of an airport pavement after almost 8 years of overlay rehabilitation with a polyester geogrid asphalt reinforcement, 9th International Conference on Geosynthetics, Guarujá, Brazil, 2010.

  25. G. E. Montestruque, R. Rodrigues, M. Nods, A. Elsing, Stop of Reflective Crack Propagation with the Use of Pet Geogrid as Asphalt Overlay Reinforcement, 5th International RILEM Conference. Limoges, France, 2004.

  26. G. E. Montestruque, Contribuição para a Elaboração de Método de Projeto de Restauração de Pavimentos Asfálticos Utilizando Geossintéticos em Sistemas AntiReflexão de Trincas [Contribution to the Elaboration of a Design Method for the Restoration of Asphalt Pavements Using Geosynthetics in Anti-Crack Reflection Systems], (PhD Thesis), Technological Institute of Aeronautics, São José dos Campos, Brazil, 2002.

    Google Scholar 

  27. F. Leite-Gembus, G. Thomson, C. A. Teoro Do Carmo, Concrete Pavement Rehabilitation by using a High Modulus Plyester Grid as Asphalt Reinforcement, 8th International Conference on Maintenance and Rehabilitation of Pavements, Singapore, 2016.

  28. G. White, State of the art: interface shear resistance of asphalt surface layers, Inter. J. Pavement Eng. 18 (10) (2018) 887–901.

    Google Scholar 

  29. Asphalt Academy, Technical Guideline, Asphalt Reinforcement for Road Construction, 1st edn. Asphalt Academy, Pretoria, 2008.

    Google Scholar 

  30. D. H. Chen, T. Scullion, J. Bilyeu, Lessons Learned on Jointed Concrete Pavement Rehabilitation Strategies in Texas, J. Transp. Eng. 132 (3) (2006) 257–265.

    Google Scholar 

  31. J. J. Hughes, E. Somers, Geogrid Mesh for Reflective Crack Control in Bituminous Overlays. Pennsylvania Department of Transportation. Report Number PA 200-013-86-001. Pennsylvania Department of Transportation, Materials and Testing Division, Harrisburg, Pennsylvania, 2000.

    Google Scholar 

  32. A. Khodaii, S. Fallah, F. Moghadas Nejad, Effects of geosynthetics on reduction of reflection cracking in asphalt overlays, Inter. J. Pavement Eng. 27 (1) (2009) 1–8.

    Google Scholar 

  33. F. Moreno-Navarro, M. Sol-Sánchez, M. C. Rubio-Gámez, Reuse of deconstructed tires as anti-reflective cracking mat systems in asphalt pavements, Constr. Buil. Mater. 53 (2014) 182–189.

    Google Scholar 

  34. F. Moreno-Navarro, M. C. Rubio-Gámez, UGR-FACT test for the study of fatigue cracking in bituminous mixes, Constr. Buil. Mater. 43 (2013) 184–190.

    Google Scholar 

  35. I. Gonzalez-Torre, M. A. Calzada-Perez, A. Vega-Zamanillo, D. Castro-Fresno, Evaluation of reflective cracking in pavements using a new procedure that combine loads with different frequencies, Constr. Buil. Mater. 75 (2015) 368–374.

    Google Scholar 

  36. K. T. Hall, J. M. Connor, S. H. Carpenter, M. I. Darter, Rehabilitation of concrete pavements: Concrete pavement evaluation and rehabilitation system. Office of Engineering and Highway Operations Research and Development. Report Number FHWA-RD-88-073. Federal Highway Administration, McLean, Virginia, 1989.

    Google Scholar 

  37. J. Li, S. T. Muench, J. P. Mahoney, L. M. Pierce, N. Sivaneswaran, Mechanistic-empirical design of new and rehabilitated pavement structures, Final Report. NCHRP 1-37A. ARA, Inc., ERES Consultants Division, Champaign, Illinois, 2004.

    Google Scholar 

  38. D. Roylance, Introduction to Fracture Mechanics. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2001.

    Google Scholar 

  39. F. Zhou, S. Hu, X. Hu, T. Scullion, M. Mikhail, L. F. Walubita, Development, Calibration, and Verification of a New Mechanistic-Empirical Reflective Cracking Model for HMA Overlay Thickness Design and Analysis, J. Transp. Eng. 136 (4) (2010) 353–369.

    Google Scholar 

  40. K. Majidzadeh, E. M. Kauffmann, D. V. Ramsamooj, Application of fracture mechanics in the analysis of pavement fatigue, Association of Asphalt Paving Technologists Conference, 1970.

  41. M. M. J. Jacob, P. C. Hopman, P. C., A. A. A. Molenaar, Application of fracture mechanics in principles to analyze cracking in asphalt concrete, Asphalt Paving Technology Conference, Baltimore, Maryland, 1996.

  42. B. Mobasher, M. Mamlouk, H. Lin, Evaluation of crack propagation properties of asphalt mixtures, J. Transp. Eng. 123 (5) (1997) 405–413.

    Google Scholar 

  43. D. Ramsamooj, Prediction of Fatigue Life of Asphalt Concrete Beams from Fracture tests, J. Test. Eval. 19 (3) (1991) 231–239.

    Google Scholar 

  44. P. Paris, F. Erdogan, A critical analysis of crack propagation laws, J. Basic Engineering, 85(3) (1963) 528–883.

    Google Scholar 

  45. Y. Li, Asphalt Pavement Fatigue Cracking Modeling, (LSU Historical Dissertations and Theses). Report Number 6999, Louisiana State University, Baton Rouge, Louisiana, 1999.

    Google Scholar 

  46. N. Pugno, M. Ciavarella, P. Cornetti, A. Carpinteri, A generalized Paris’ law for fatigue crack growth, J. Mech. Phys. Solids 54 (7) (2006) 1333–1349.

    MATH  Google Scholar 

  47. R. A. Schapery, A theory of crack growth in viscoelastic media. Mechanics and Materials Research Center. Report Number MM 2764-73-1. Texas A&M University, College Station, Texas, 1973.

    Google Scholar 

  48. R. A. Schapery, A Theory of Crack Initiation and Growth in Viscoelastic Media, Inter. J. Fracture 11 (3) (1975) 369–388.

    Google Scholar 

  49. R. A. Schapery, A Method for Predicting Crack Growth in Nonhomogeneous Viscoelastic Media, Inter. J. Fracture, 14 (3) (1978) 293–309.

    MathSciNet  Google Scholar 

  50. G. P. Cherepanov, The propagation of cracks in a continuous media, J. Appl. Math. Mech. 31 (3) (1967) 476–488.

    Google Scholar 

  51. J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech. 35 (2) (1968) 379–386.

    Google Scholar 

  52. N. Li, Asphalt Mixture Fatigue Testing, Influence of Test Type and Specimen Size. Road and Railway Engineering Section, (PhD thesis), Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands, 2013.

    Google Scholar 

  53. F. P. Germann, R. L. Lytton, Methodology for predicting the reflection cracking life of asphalt concrete overlays. Texas Transportation Institute. Report Number FHWA/TX-79-/09 +207-5. Texas A&M University, Texas, 1979.

    Google Scholar 

  54. A. A. A. Molenaar, Fatigue and reflection cracking due to traffic Loads, Association of Asphalt Paving Technologists Conference, 1984.

  55. P. W. Jayawickrama, R. L. Lytton, Methodology for predicting asphalt concrete overlay life against reflection cracking, International Conference of Structural Design of Asphalt Pavements, Michigan, 1987.

  56. A. H. de Bondt, Anti-Reflective Cracking Design of (Reinforced) Asphaltic Overlays, (Ph.D. thesis), Delft University of Technology, Delft, Netherlands, 1999.

    Google Scholar 

  57. I. L. Al-Qadi, M. Elseifi, D. Leonard, Development of an Overlay Design Model for Reflective Cacking with and without Steel Reinforcement, Asphalt Paving Technology Conference, Lexington, Kentucky, 2003.

  58. H. Lee, H. Y. Kim, Viscoelastic constitutive model for asphalt concrete under cyclic loading, J. Eng. Mech. 124 (1) (1988) 32–40.

    Google Scholar 

  59. H. Lee, H. Y. Kim, Viscoelastic continuum damage model of asphalt concrete with healing, J. Eng. Mech. 124 (11) (1988) 1224–1232.

    Google Scholar 

  60. P. Karki, R. Li, A. Bhasin, Quantifying overall damage and healing behaviour of asphalt materials using continuum damage approach, Inter. J. Pavement Eng. 16 (4) (2015) 350–362.

    Google Scholar 

  61. M. Kutay, M. Lanotte, Viscoelastic continuum damage (VECD) models for cracking problems in asphalt mixtures, Inter. J. Pavement Eng. 19 (3) (2018) 231–242.

    Google Scholar 

  62. Y. Su, H. Asadi, H. Nikraz, VECD investigation and quantification of rest period healing within pulse-rest loading, Inter. J. Pavement Eng. (2019), DOI: https://doi.org/10.1080/10298436.2019.1566543.

  63. F. L. Tsai, Prediction of Reflective Cracking in Hot Mix Asphalt Overlays. Office of Graduate Studies, (PhD Thesis), Texas A & M University, Texas, 2010.

    Google Scholar 

  64. R. Wu, J. T. Harvey, C. L. Monismith, W. G. Buttlar, E. Masad, A. H.de Bondt, B. Huang, G. Chehab, I. L. Al-Qadi, J. Wang, Towards a mechanistic model for reflective cracking in asphalt concrete overlays, Association of Asphalt Paving Technology Conference, Savannah, Georgia, 2006.

  65. R. H. J. Peerlings, R. de Borst, W. A. M. Brekelmans, J. H. P. de Vree, Gradient Enhanced Damage for Quasi-Brittle Materials, Inter. J. Numerical Methods Eng. 39 (19) (1996) 3391–3403.

    MATH  Google Scholar 

  66. G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech. 7 (1962) 55–129.

    MathSciNet  Google Scholar 

  67. D. S. Dugdale. Yielding of steel sheets containing slits, J. Mech. Phys. Solids 8 (2) (1960) 100–104.

    Google Scholar 

  68. Z. P. Bazant, J. Planas, Fracture and size effect in concrete and other quasi-brittle materials, CRC Press, Boca Raton, Florida, 1998.

    Google Scholar 

  69. Y. R. Kim, Cohesive Zone Model to Predict Fracture in Bituminous Materials and Asphaltic Pavements: State-of-the-Art Review, Inter. J. Pavement Eng. 12 (4) (2013) 343–356.

    Google Scholar 

  70. K. Park, Potential-Based Fracture Mechanics Using Cohesive Zone and Virtual Internal Bond Modeling. Graduate College of the University of Illinois at Urbana-Champaign, (PhD Thesis), Urbana-Champaign, Illinois, 2009.

  71. S. H. Song, G. H. Paulino, W. G. Buttler, A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material, Eng. Fracture Mech. 73 (18) (2006) 2829–2848.

    Google Scholar 

  72. S. H. Song, G. H. Paulino, W. G. Buttler, Simulation of Crack Propagation in Asphalt Concrete Using an Intrinsic Cohesive Zone Model, J. Eng. Mech. 132 (11) (2006) 1215–1223.

    Google Scholar 

  73. V. Tvergaard, Effect of fiber debonding in a whisker-reinforced metal, Mater. Sci. Eng. 125 (2) (1990) 203–213.

    Google Scholar 

  74. X. Xu, A. Needleman, Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids 42 (9) (1994) 1397–1434.

    MATH  Google Scholar 

  75. G. T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials, Inter. J. Solids Struct. 33 (20–22) (1996) 2899–2938.

    MATH  Google Scholar 

  76. J. B. Soares, F. A. C. de Freitas, D. H. Allen, Crack modeling of asphaltic mixtures considering heterogeneity of the material, Transp. Res. Rec. 1832 (1) (2003) 113–120.

    Google Scholar 

  77. G. H. Paulino, S. H. Song, W. G. Buttler, Cohesive zone modeling of fracture in asphalt concrete, 5th International RILEM conference, Limoges, France, 2004.

  78. E. V. Dave, S. H. Song, W. G. Buttlar, G. Paulino, Reflective and thermal cracking modeling of asphalt concrete overlays, International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials, Athens, Greece, 2007.

  79. Y. R. Kim, F. A. C. de Freitas, J. S. Jung, Y. Sim, Characterization of bitumen fracture using tensile tests incorporated with viscoelastic cohesive zone model, Constr. Buil. Mater. 88 (2015) 1–9.

    Google Scholar 

  80. D. H. Allen, C. R. Searcy, A micromechanical model for a viscoelastic cohesive zone, Inter. J. Fract. 107 (2) (2001) 159–176.

    Google Scholar 

  81. K. Z. Rami, S. Amelian, Y. R. Kim, T. You, D. N. Little, Modeling the 3D fracture-associated behavior of viscoelastic asphalt mixtures using 2D microstructures, Eng. Fract. Mech. 182 (2017) 86–99.

    Google Scholar 

  82. T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Inter. J. Numerical Methods Eng. 45 (5) (1999) 601–620.

    MATH  Google Scholar 

  83. C.S. Desai, Unified DSC constitutive model for pavement materials with numerical implementation, Inter. J. Geomech. 7 (2) (2007) 83–101.

    Google Scholar 

  84. M. R. Islam, J. Meghan, P. Vallejo, R. A. Tarefder, Crack Propagation in Hot Mix Asphalt Overlay Using Extended Finite-Element Model, J. Mater. Civ. Eng. 29 (5) (2017). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001815.

  85. X. Wang, K. Li, Y. Zhong, Q. Xu, Investigation of Thermal Reflective Cracking in Asphalt Pavement Using XFEM Coupled with DFLUX Subroutine and FILM Subroutine, Arab. J. Sci. Eng. 44 (5) (2018) 4795–4805.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Deilami.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deilami, S., White, G. Review of reflective cracking in composite pavements. Int. J. Pavement Res. Technol. 13, 524–535 (2020). https://doi.org/10.1007/s42947-020-0332-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-020-0332-5

Keywords

Navigation