Skip to main content
Log in

Low-temperature performance of SBS modified asphalt mixture in high altitude and cold regions

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Due to the severe natural environment found in high-altitude and cold regions, where the altitude is around 4000 m, and the average annual temperature is below 0°C, the design method and quality indicators of asphalt mixture performance is different in comparison to inland cities. To optimize design parameters and low-temperature performance of SBS modified asphalt mixture in high-altitude and cold regions, the beam bending, splitting, aging, and freez-thaw cycle tests were conducted based on the test protocol, field experience and quantitative analysis. Standard mixing procedures and evaluation indexes for low temperature anti-cracking performance were used to reveal the low temperature decaying characteristics of SBS modified asphalt mixtures. The results show that the optimum binder-aggregate ratio of 5.3% and the optimum SBS modifier dosage of 4%∼5% are recommended for SBS modified asphalt mixture in the high altitude and cold regions of the Tibetan Plateau. The splitting test is suitable for assessing low-temperature performance of asphalt mixtures in high altitude and cold regions with a loading rate adjusted to 2 mm/min. When the loading rate is adjusted to 10 mm/min, the beam bending test is suitable for studying the low-temperature performance of asphalt mixtures after long-term aging in high altitude and cold regions. The freezing and thawing split test is suitable for assessing low-temperature performance of asphalt mixtures after freezing and thawing in high altitude and cold regions when the loading rate is adjusted to 2 mm/min. Under long-term aging conditions, as temperature increases (−15°C∼0°C), the decay rate of maximum flexural-tensile strain of traditional asphalt mixture is bigger than that of SBS modified asphalt mixture. Having endured freezing and thawing cycles, the splitting strength and the maximum flexural-tensile strain of asphalt mixtures decreases. After 40 cycles of freezing and thawing, the maximum flexural-tensile strain decreases by 15.2% in comparison to state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Huang, R. E. Robertson, J. F. Branthaver, J. C. Petersen, Impact of lime modification of asphalt and freeze-thaw cycling on the asphalt-aggregate interaction and moisture resistance to moisture damage, J. Mater. Civ. Eng. 17(6), (2005) 711–718.

    Article  Google Scholar 

  2. X. J. Li, M. O. Marasteanu, Using semi circular bending test to evaluate low temperature fracture resistance for asphalt concrete, Exp. Mech. 50(7) (2010) 867–876.

    Article  Google Scholar 

  3. G. Wang, W. Bai, N. Li, H. Hu, Climate changes and its impact on tundra ecosystem in Qinghai-tibet plateau, China, Clim. Change 106(3) (2011) 463–482.

    Article  Google Scholar 

  4. X. Li, M. O. Marasteanu, Cohesive modeling of fracture in asphalt mixtures at low temperatures, Inter. J. Fract. 136(1–4) (2005) 285–308.

    Article  Google Scholar 

  5. T. S. Park, H. K. Cho, Evaluation of mechanical-characteristics of SBS polymer modified asphalt mixtures upon variation of filler contents, Neurochem. Res. 33(10) (2002) 1979–89.

    Google Scholar 

  6. B. Birgisson, A. Montepara, E. Romeo, G. Tebaldi, Characterisation of asphalt mixture cracking behaviour using the three-point bending beam test, Inter. J. Pave. Eng. 12(6) (2011) 569–578.

    Article  Google Scholar 

  7. A. S. Ahari, S. A. Forough, A. Khodaii, F. M. Nejad, Modeling the primary and secondary regions of creep curves for SBS-modified asphalt mixtures under dry and wet conditions, J. Mater. Civ. Eng. 26(5) (2013) 904–911.

    Article  Google Scholar 

  8. S. A. Forough, Investigating the effects of loading frequency and temperature on moisture sensitivity of SBS-modified asphalt mixtures, J. Mater. Civ. Eng. 26(5) (2014) 897–903.

    Article  Google Scholar 

  9. G. G. Al-Khateeb, K. A. Ghuzlan, The combined effect of loading frequency, temperature, and stress level on the fatigue life of asphalt paving mixtures using the idt test configuration, Inter. J. Fat. 59(3) (2014) 254–261.

    Article  Google Scholar 

  10. X. Zhao, S. Wang, Q. Wang, H. Yao, Rheological and structural evolution of sbs modified asphalts under natural weathering, Fuel 184 (2016) 242–247.

    Article  Google Scholar 

  11. L. P. Liu, W. L. Dong, L. J. Sun, T. Jiang, Ultraviolet radiation aging performance of sbs and sbr modified asphalt, J. Build. Mater. 12(6) (2009) 676–678.

    Google Scholar 

  12. Z. M. Ou, F.J. Li, Studies the Key-Technologies of Karamay Matrix Asphalt Used in SBS Modified Bitumen, App. Mech. Mater. 744–746 (2015) 1308–1311.

    Article  Google Scholar 

  13. L. L. Tu, J. Zheng, S.P. Wu, Research of Coarse Grading Asphalt Mixtures Based on Grey Relational Analysis, Key Eng. Mater. 599 (2014) 234–238.

    Article  Google Scholar 

  14. Y. Q. Zhong, X. M. Huang, M. A. Tao, Y. L. Zhao, T. College, Design and experimental research of low thermal conductivity asphalt mixture in permafrost region, J. Build. Mater. 16(4) (2013) 716–719+729.

    Google Scholar 

  15. K. W. Kim, S. J. Kweon, Y. S. Doh, T. S. Park, Fracture toughness of polymer-modified asphalt concrete at low tempera, Can. J. Civ. Eng. 30(2) (2011) 406–413.

    Article  Google Scholar 

  16. E. V. Dave, B. Behnia, S. Ahmed, W. G. Buttlar, H. Reis, Low temperature fracture evaluation of asphalt mixtures using mechanical testing and acoustic emissions techniques, Asphalt Paving Technology: Ass. Asph. Pav. Tech.-Proc. Tech. Sess. 80(4) (2011) 193–220.

    Google Scholar 

  17. K. Anurag, F. Xiao, S. N. Amirkhanian, Laboratory investigation of indirect tensile strength using roofing polyester waste fibers in hot mix asphalt. Constr. Build. Mater. 23(5) (2009) 2035–2040.

    Article  Google Scholar 

  18. Y. Tan, Z. Lei, J. Lun, Analysis of the evaluation indices from tsrst, J. Mater. Civ. Eng. 24(10) (2012) 1310–1316.

    Article  Google Scholar 

  19. S. P. Wu, G. J. Zhu, L. Pang, C. H. Liu, Influences of aging history on low temperature performance of asphalt concrete. Key Eng. Mater. 385–387 (2008) 493–496.

    Article  Google Scholar 

  20. C. J. Jiang, B. Q. Li, Y. J. Wang, J. C. Wang, Influence of ultraviolet irradiation quantity on asphalt rheological performance, Key Eng. Mater. 599 (2014) 173–177.

    Article  Google Scholar 

  21. B. Ma, W. Si, D. P. Zhu, H. N. Wang, Applying method of moments to model the reliability of deteriorating performance to asphalt pavement under freeze-thaw cycles in cold regions, J. Mater. Civ. Eng. 27(1) (2015) 04014103

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Scientific Research Foundation of Xi’an Aeronautical University (2018KY0212), the research project of the National Natural Science Foundation of China (NSFC) (No. 51578075), and the Special Fund for Basic Scientific Research of Central Colleges, Chang’an University (CHD310821153503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Zhang.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, H. & Yang, X. Low-temperature performance of SBS modified asphalt mixture in high altitude and cold regions. Int. J. Pavement Res. Technol. 12, 33–42 (2019). https://doi.org/10.1007/s42947-019-0005-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-019-0005-4

Keywords

Navigation