Skip to main content
Log in

Evaluation of rainfall and atmospheric parameters during afternoon summer storms over Macaé city (Brazil) using WRF numerical model

  • Research Article
  • Published:
Bulletin of Atmospheric Science and Technology Aims and scope Submit manuscript

Abstract

Forecasting summer storms requires addressing critical atmospheric conditions to determine the potential of their development and further evolution. However, due to the high degree of variability in the development of the storms, their early detection still represents a challenge to the operational forecasters and scientific community. In this context, this study endeavored to evaluate the rainfall and atmospheric parameters simulated by the Weather, Research, and Forecasting (WRF) numerical model using three grid domains (27 km, 09 km, and 03 km). This study proposed an evaluation of precipitation and atmospheric parameters for ten summer storm events over Macaé city during the austral summer of 2020 and 2021, as initially reported by local observers. The synoptic chart data showed that the local effects, the frontal systems passages, and the South Atlantic Convergence Zone (SACZ) were related to the storms observed. From the qualitative evaluation of the precipitation simulated by WRF, we found higher values over the mountainous region of Macaé city and lower values downstream. The quantitative assessment showed that the WRF model could reproduce the hourly rainfall development, although with a tendency of underestimation compared to the observations. The mean temporal evolution of atmospheric variables over Macaé city corroborated the importance of the joint analyses of thermodynamic and dynamic parameters and the increase of horizontal grid resolution to represent better the environment favorable to storm development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The data used is open access. From Weather Prevision Center and Climate Studies of Brazilian National Space Research Institute (https://www.cptec.inpe.br/) and the forecast data from Global Forecast System (GFS) belonging to National Centers for Environmental Information (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets). This work presents figures and tables as supplementary material.

Code availability

Not applicable.

This research does not involve human participants and/or animals.

References

  • Baba Y (2016) Response of rainfall to land surface properties under weak wind shear conditions. Atmos Res 182:335–345

    Article  Google Scholar 

  • Bluestein HB (1993) Synoptic-dynamic meteorology in midlatitudes. Volume II: observations and theory of weather systems. Taylor and Francis, New York

    Google Scholar 

  • Bonnet SM, Dereczynski CP, Nunes AMB (2018) Caracterização Sinótica e Climatológica de Eventos de Chuva Pós-Frontal no Rio de Janeiro. Revista Brasileira De Meteorologia 33:547–557

    Article  Google Scholar 

  • Botes D, Mecikalski JR, Jedlovec GJ (2012) Atmospheric infrared sounder (AIRS) sounding evaluation and analysis of the pre-convective environment. J Geophys Res 117:D09205. https://doi.org/10.1029/2011JD016996

    Article  Google Scholar 

  • Busuioc A, Birsan MV, Carbunaru D, Baciu M, Orzan A (2016) Changes in the large scale thermodynamic instability and connection with rain shower frequency over Romania: verification of the Clausius-Clapeyron scaling. Int J Climatol 36:2015–2034. https://doi.org/10.1002/joc.4477

    Article  Google Scholar 

  • CEMADEN (2021) Centro Nacional de Monitoramento e Alertas de Desastres Naturais. Electronic document: https://www.gov.br/mcti/pt-br/rede-mcti/cemaden. Accessed 02 May 2021

  • CPTEC (2021) Centro de Previsão do Tempo e Estudos Climáticos. Electronic document: http://www.cptec.inpe.br. Accessed 02 May 2021

  • Davolio S, Mastrangelo D, Miglietta MM, Drofa O, Buzzi A, Malguzzi P (2009) High resolution simulations of a flash flood near Venice. Nat Hazards Earth Syst Sci 9:1671–1678

    Article  Google Scholar 

  • Derubertis D (2006) Recent trends in four common stability indices derived from US radiosonde observations. J Clim 19:309–323

    Article  Google Scholar 

  • Done J, Davis CA, Weisman ML (2004) The next generation of NWP: explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos Sci Lett 5:110–117

    Article  Google Scholar 

  • Doswell CA (2001) Severe convective storms—an overview. In: Doswell C (ed) Severe convective storms, meteorological monograph, 28(50). Am Meteor Soc, Massachusetts, pp 1–26

  • Doswell CA III (1987) The distinction between large-scale and mesoscale contribution to severe convection: a case study example. Weather Forecast 2:3–16

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Emanuel KA (1994) Atmospheric convection. Oxford University Press, Oxford

    Google Scholar 

  • Galway J (1956) The lifted index as a predictor of latent instability. Bull Amer Meteorol Soc 37:528–529

    Article  Google Scholar 

  • GFS (2021) Global Forecast System. Electronic document: https://www.ncdc.noaa.gov/. Accessed 02 May 2021

  • Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Wea Rev 132:103–120

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. https://doi.org/10.1175/MWR3199.1

    Article  Google Scholar 

  • Huntrieser H, Schiesser H, Schmid W, Waldvogel A (1996) Comparison of traditional and newly developed thunderstorm indices for Switzerland. Weather Forecast 12:108–125

    Article  Google Scholar 

  • IBGE (2021) Instituto Brasileiro de Geografica e Estatística. Electronic document https://www.ibge.gov.br/. Accessed 02 May 2021

  • Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918

    Article  Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteor 43:170–181

    Article  Google Scholar 

  • Kunz M (2007) The skill of convective parameters and indices to predict isolated and severe thunderstorms. Nat Hazards Earth Syst Sci 7:327–342

    Article  Google Scholar 

  • Lean JW, Clark PA, Dixon M, Roberts NM, Fitch A, Forbes R, Halliwell C (2008) Characteristics of high resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon Wea Rev 136:3408–3424

    Article  Google Scholar 

  • Lemos CF, Calbete NO (1996) Sistemas Frontais que atuaram no litoral de 1987 a 1995. Climanálise Especial, edição comemorativa de 10 anos

  • Lima AO, Lyra GB, Abreu MC et al (2021) Extreme rainfall events over Rio de Janeiro State, Brazil: characterization using probability distribution functions and clustering analysis. Atmos Res 247:105221. https://doi.org/10.1016/j.atmosres.2020.105221

    Article  Google Scholar 

  • Marcelino EV (2007) Desastres naturais e geotecnologias: Conceitos básicos. CRS/INPE, Santa Maria, p 20p

  • Markowski P, Richardson Y (2010) Mesoscale meteorology in midlatitudes. Wiley-Blackwell, New York

    Book  Google Scholar 

  • Medeiros VS, Barros MTL (2012) Chuvas e desastres naturais ocorridos no Vale do Itajaí em 2008 e 2011. I Congresso Brasileiro sobre Desastres Naturais. Unesp, São Paulo

    Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Nascimento EL (2005) Previsão de tempestades severas utilizando-se parâmetros convectivos e modelos de mesoescala: uma estratégia operacional adotável no Brasil? Rev Bras Meteor 20(1):113–122

    Google Scholar 

  • Pinheiro HR, Escobar GCJ, Andrade KM (2014) Aplicação de uma ferramenta objetiva para previsão de tempo severo em ambiente operacional. Rev Bras Meteor 29(2):209–228

    Article  Google Scholar 

  • Pristo MVJ, Dereczynski CP, Souza PR, Menezes WF (2018) Climatologia de Chuvas Intensas no Município do Rio de Janeiro. Rev Bras Meteor 33:615–630. https://doi.org/10.1590/0102-7786334005

    Article  Google Scholar 

  • Púcik T, Groenemeijer P, Rýva D, Kolár M (2015) Proximity soundings of severe and nonsevere thunderstorms in central Europe. Mon Weather Rev 143:4805–4821. https://doi.org/10.1175/MWR-D-15-0104.1

    Article  Google Scholar 

  • Rozante JR, Moreira DS, de Goncalves LGG, Vila DA (2010) Combining TRMM and surface observations of precipitation: technique and validation over South America. Weather Forecast 25:885–894. https://doi.org/10.1175/2010WAF2222325.1

    Article  Google Scholar 

  • Schwarz CS (2014) Reproducing the September 2013 record-breaking rainfall over the Colorado Front Range with high-resolution WRF model forecasts. Wea Forecast 29:393–402

    Article  Google Scholar 

  • Silva Dias MAF (1987) Sistemas de mesoescala e previsão de tempo a curto prazo. Rev Bras Meteor 2:133–150

    Google Scholar 

  • Silva FP, Justi da Silva MGA, Rotunno Filho OC, Pires GD, Sampaio RJ, Magalhães AAA (2019) Synoptic thermodynamic and dynamic patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil). Meteorol Atmos Phys 131:845–862. https://doi.org/10.1007/s00703-018-0609-2

    Article  Google Scholar 

  • Silva FP, Justi da Silva MGA, Rotunno Filho OC, Pires GD, Sampaio RJ, Magalhães AAA (2020) Observed and estimated atmospheric thermodynamic instability using radiosonde observations over the city of Rio de Janeiro, Brazil. Meteorol Atmos Phys 132:297–314. https://doi.org/10.1007/s00703-019-00688-3

    Article  Google Scholar 

  • Silva FP, Justi da Silva MGA, Rotunno Filho OC, Pires GD, Sampaio RJ, Magalhães AAA (2021) Real-time River level estimation based on variations of radar reflectivity—a case study of the Quitandinha River watershed, Petrópolis, Rio de Janeiro (Brazil). Bull Atmos Sci Technol 2:1. https://doi.org/10.1007/s42865-021-00030-z

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. Tech. Rep. TN-475+STR, NCAR

  • Tajbakhsh S, Ghafarian P, Sahraian F (2012) Instability indices and forecasting thunderstorms: the case of 30 April 2009. Nat Hazards Earth Syst Sci 12:1–11. https://doi.org/10.5194/nhess-12-403-2012

    Article  Google Scholar 

  • Teixeira MS, Satyamurty P (2007) Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil. Mon Weather Rev 135:598–617

    Article  Google Scholar 

  • Tewari M, Chen F, Wang W, Dudhia J, LeMone M, Mitchell K, Ek M, Gayno G, Weigel J, Cuenca R (2004) Implementation and verification of the unified Noah land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp 11–15

  • Ulanski SL, Garstang M (1978) The role of surface divergence and vorticity in the life cycle of convective rainfall. Part I: observations and analysis. J Atmos Sci 35:1047–1062

    Article  Google Scholar 

  • Vasconcellos FC, Cavalcanti IFA (2010) Uma avaliação das previsões do modelo regional ETA em alta resolução para dois casos de chuva intensa ocorridos na região da Serra do Mar. Rev Bras Meteor 25(4):501–512

    Article  Google Scholar 

  • Weisman ML, Davis CA, Wang W, Manning KM, Klemp JB (2008) Experiences with 0–36-h explicit convective forecasts with the WRF-model. Wea Forecast 23:407–437

    Article  Google Scholar 

  • Wetzel SW, Martin JE (2001) An operational ingredients-based methodology for forecasting midlatitude winter season precipitation. Weather Forecast 16:156–167

    Article  Google Scholar 

  • Weusthoff T, Ament F, Arpagaus M, Rotach MW (2010) Assessing the benefits of convection-permitting models by neighborhood verification: examples from MAP D-PHASE. Mon Wea Rev 138:3418–3433

    Article  Google Scholar 

  • Wilks DS (1995) Statistical methods in the atmospheric sciences: an introduction, vol 59. Academic Press, San Diego, p 467

    Book  Google Scholar 

  • WMO (1989) World Meteorological Organization. Calculation of monthly and annual 30-year standard normal. Electronic document: https://library.wmo.int/doc_num.php?explnum_id=9521. Accessed 15 May 2021

  • WMO (2010) World Meteorological Organization. Manual on the global data-processing and forecasting system. Electronic document: https://library.wmo.int/doc_num.php?explnum_id=10164. Accessed 15 May 2021

  • Yang Y, Chen X, QI Y (2013) Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. J Geophys Res Atmos 118:1896–1905. https://doi.org/10.1002/jgrd.50214

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like also to recognize the support of Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) by means of the support through the Project FAPERJ – Edital Nº 12/2018 – PROGRAMA “Apoio às Universidades Estaduais—UERJ, UENF e UEZO—2018”—Projeto Clima e Energia Proc. n.º E-26/010.101.145/2018.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) by means of the Project FAPERJ – Edital Nº 12/2018 – PROGRAMA “Apoio às Universidades Estaduais—UERJ, UENF e UEZO—2018”—Projeto Clima e Energia Proc. n.º E-26/010.101.145/2018.

fundação de amparo à pesquisa do estado do rio de janeiro (faperj),E-26/010.101.145/2018,Maria Gertrudes Alvarez Justi da Silva

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Polifke da Silva.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Appendix. Instability indices definition

Appendix. Instability indices definition

The K and TT indices show similar qualitative interpretations if the troposphere is vertically warm and wet. Meanwhile, if there is a dry atmospheric layer at 700 hPa, the TT is not affected and can represent the atmospheric instability better than the K index (Nascimento 2005). The lapse rate (LR) represents temperature variation between two atmospheric levels, and according to Nascimento (2005), the highest the LR values (generally above 6.5 °C/km) between these two layers, the greatest is the conditional atmospheric instability. The convective available potential energy (CAPE) represents a vertical integration of the difference between the Tvp and Tv from LFC to the LN. CAPE values are related to the atmospheric potential to generate deep convection if a dynamic forcing is present (Bluestein 1993; Derubertis 2006). The lifted index (LI) represents the temperature difference between a lifted parcel and the air at 500 hPa, and negative LI characterizes an environment favorable to convective storms (Galway 1956). Precipitable water (PW) would be the water depth in a column of the atmosphere if all water in that column were precipitated as rain. Velocity convergence at 850 hPa (CV850), velocity divergence at 250 hPa (DV250), wind shear (WS) between winds at 10 m and 500 hPa, relative vorticity (VT500), and upward vertical motion (W500) at 500 hPa can be related with the dynamic mechanisms required to provide upward air motion (Doswell 1987; Tajbakhsh et al. 2012) upwards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F., da Silva, A., Justi da Silva, M. et al. Evaluation of rainfall and atmospheric parameters during afternoon summer storms over Macaé city (Brazil) using WRF numerical model. Bull. of Atmos. Sci.& Technol. 2, 12 (2021). https://doi.org/10.1007/s42865-021-00044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42865-021-00044-7

Keywords

Navigation