Skip to main content
Log in

Integrated strategies on cobalt phosphides-based electrocatalysts for efficient hydrogen evolution reaction

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

The development of cost-effective and durable hydrogen evolution reaction (HER) electrocatalysts plays a vital role in dealing with the issues related to carbon dioxide emission. Cobalt phosphide-based nanomaterials are evaluated as promising advocates for HER due to high catalytic activities, good stability, and rich defect. This review commences with an exploration of the synthetic pathways of CoP, including solid-phase, solution-phase along with electrochemical methods. Besides, the mechanism of hydrogen formation is expressed thoroughly, after which various integrated strategies of morphology engineering with doping, assisted highly conductive materials, and construction of heterostructure were introduced for HER. Ultimately, burdensome tasks and possible guidance for the advancement of CoP-based nanomaterials were discussed for hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [47]. Copyright 2016, the Royal Society of Chemistry

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data generated during and/or analyzed in this article are available from the corresponding author on the reasonable request.

References

  1. Li J, Xu K, Liu F, Li Y, Hu Y, Chen X, Wang H, Xu W, Ni Y, Ding G. Hollow hierarchical Cu2O-derived electrocatalysts steering CO2 reduction to multi-carbon chemicals at low overpotentials. Adv Mater. 2023;35(26):2301127. https://doi.org/10.1002/adma.202301127.

    Article  CAS  Google Scholar 

  2. Wang Y, Jiang J, Zou JJ, Mi W. Spin-gapless semiconductors and quantum anomalous hall effects of tetraazanaphthotetraphene-based two-dimensional transition-metal organic frameworks on spintronics and electrocatalysts for CO2 reduction. ACS Appl Electron Mater. 2023;5(2):1243. https://doi.org/10.1021/acsaelm.2c01694.

    Article  CAS  Google Scholar 

  3. Chen P, Wu Y, Rufford TE, Wang L, Wang G, Wang Z. Organic molecules involved in Cu-based electrocatalysts for selective CO2 reduction to C2+ products. Mater Today Chem. 2023;27: 101328. https://doi.org/10.1016/j.mtchem.2022.101328.

    Article  CAS  Google Scholar 

  4. Jiang D, Bu R, Xia W, Hu Y, Zhou M, Gao E, Asahi T, Yamauchi Y, Tang J. Cobalt phthalocyanine-based conjugated polymer as efficient and exclusive electrocatalyst for CO2 reduction to ethanol. Mater Rep: Energy. 2023;3(1):100176. https://doi.org/10.1016/j.matre.2023.100176.

    Article  CAS  Google Scholar 

  5. Liang XD, Tian N, Hu SN, Zhou ZY, Sun SG. Recent advances of bismuth-based electrocatalysts for CO2 reduction: strategies, mechanism and applications. Mater Rep Energy. 2023;3(2):100191. https://doi.org/10.1016/j.matre.2023.100191.

    Article  CAS  Google Scholar 

  6. Kuang P, Ni Z, Zhu B, Lin Y, Yu J. Modulating the d-band center enables ultrafine Pt3Fe alloy nanoparticles for pH-universal hydrogen evolution reaction. Adv Mater. 2023;35(41): e2303030. https://doi.org/10.1002/adma.202303030.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Lin Z, Wang Y, Shen S, Zhang Q, Wang J, Zhong W. Nontrivial topological surface states in Ru3Sn7 toward wide pH-range hydrogen evolution reaction. Adv Mater. 2023;35(25):2302007. https://doi.org/10.1002/adma.202302007.

    Article  CAS  Google Scholar 

  8. Wang T, Miao L, Zheng S, Qin H, Cao X, Yang L, Jiao L. Interfacial engineering of Ni3N/Mo2N heterojunctions for urea-assisted hydrogen evolution reaction. ACS Catal. 2023;13(7):4091. https://doi.org/10.1021/acscatal.3c00113.

    Article  CAS  Google Scholar 

  9. Dogra N, Agrawal P, Pathak S, Saini R, Sharma S. Hydrothermally synthesized MoSe2/ZnO composite with enhanced hydrogen evolution reaction. Int J Hydrog Energy. 2023;48(67):26210. https://doi.org/10.1016/j.ijhydene.2023.03.352.

    Article  CAS  Google Scholar 

  10. Bati AS, Zhong YL, Burn PL, Nazeeruddin MK, Shaw PE, Batmunkh M. Next-generation applications for integrated perovskite solar cells. Commun Mater. 2023;4(1):2. https://doi.org/10.1038/s43246-022-00325-4.

    Article  CAS  Google Scholar 

  11. Xiao H, Zuo C, Yan K, Jin Z, Cheng Y, Tian H, Xiao Z, Liu F, Ding Y, Ding L. Highly efficient and air-stable inorganic perovskite solar cells enabled by polylactic acid modification. Adv Energy Mater. 2023;13(32):2300738. https://doi.org/10.1002/aenm.202300738.

    Article  CAS  Google Scholar 

  12. Bhattarai S, Hossain MK, Pandey R, Madan J, Samajdar D, Rahman MF, Ansari MZ, Amami M. Perovskite solar cells with dual light absorber layers for performance efficiency exceeding 30%. Energy Fuels. 2023;37(14):10631. https://doi.org/10.1021/acs.energyfuels.3c01659.

    Article  CAS  Google Scholar 

  13. Do HH, Nguyen THC, Van Nguyen T, Xia C, Nguyen DLT, Raizada P, Singh P, Nguyen VH, Ahn SH, Kim SY. Metal-organic-framework based catalyst for hydrogen production: progress and perspectives. Int J Hydrog Energy. 2022;47(88):37552. https://doi.org/10.1016/j.ijhydene.2022.01.080.

    Article  CAS  Google Scholar 

  14. Yao Q, Zhang X, Lu ZH, Xu Q. Metal-organic framework-based catalysts for hydrogen production from liquid-phase chemical hydrides. Coord Chem Rev. 2023;493: 215302. https://doi.org/10.1016/j.ccr.2023.215302.

    Article  CAS  Google Scholar 

  15. Paitandi RP, Wan Y, Aftab W, Zhong R, Zou R. Pristine metal–organic frameworks and their composites for renewable hydrogen energy applications. Adv Funct Mater. 2023;33(8):2203224. https://doi.org/10.1002/adfm.202203224.

    Article  CAS  Google Scholar 

  16. He J, Yang Q, Song Z, Chang W, Huang C, Zhu Y, Ma X, Wang X. Improving the carbon resistance of iron-based oxygen carrier for hydrogen production via chemical looping steam methane reforming: a review. Fuel. 2023;351: 128864. https://doi.org/10.1016/j.fuel.2023.128864.

    Article  CAS  Google Scholar 

  17. Yin Z, Xu H, Chen Y, Zhao T, Wu J. Experimental simulate on hydrogen production of different coals in underground coal gasification. Int J Hydrog Energy. 2023;48(19):6975. https://doi.org/10.1016/j.ijhydene.2022.03.205.

    Article  CAS  Google Scholar 

  18. Zhao H, Yuan ZY. Progress and perspectives for solar-driven water electrolysis to produce green hydrogen. Adv Energy Mater. 2023;13(16):2300254. https://doi.org/10.1002/aenm.202300254.

    Article  CAS  Google Scholar 

  19. Qian X, Fang J, Xia J, He G, Chen H. Recent progress and perspective on molybdenum-based electrocatalysts for water electrolysis. Int J Hydrog Energy. 2023;48(67):26084. https://doi.org/10.1016/j.ijhydene.2023.03.228.

    Article  CAS  Google Scholar 

  20. Wu H, Zheng W, Zhu R, Zhou M, Ren X, Wang Y, Cheng C, Zhou H, Cao S. Modulating coordination structures and metal environments of MOFs-engineered electrocatalysts for water electrolysis. Chem Eng J. 2023;452(3): 139475. https://doi.org/10.1016/j.cej.2022.139475.

    Article  CAS  Google Scholar 

  21. Jaimes-Paez CD, Vences-Alvarez E, Salinas-Torres D, Morallón E, Rangel-Mendez JR, Cazorla-Amorós D. Microwave-assisted synthesis of carbon-supported Pt nanoparticles for their use as electrocatalysts in the oxygen reduction reaction and hydrogen evolution reaction. Electrochim Acta. 2023;464: 142871. https://doi.org/10.1016/j.electacta.2023.142871.

    Article  CAS  Google Scholar 

  22. Xu S, Niu M, Zhao G, Ming S, Li X, Zhu Q, Ding LX, Kim M, Alothman AA, Mushab MSS. Size control and electronic manipulation of Ru catalyst over B, N co-doped carbon network for high-performance hydrogen evolution reaction. Nano Res. 2023;16(5):6212. https://doi.org/10.1007/s12274-022-5250-1.

    Article  ADS  CAS  Google Scholar 

  23. Mai HD, Jeong S, Bae GN, Tran NM, Youn JS, Park CM, Jeon KJ. Pd sulfidation-induced 1T-phase tuning in monolayer MoS2 for hydrogen evolution reaction. Adv Energy Mater. 2023;13(23):2300183. https://doi.org/10.1002/aenm.202300183.

    Article  CAS  Google Scholar 

  24. Li XX, Liu XC, Liu C, Zeng JM, Qi XP. Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting. Tungsten. 2023;5(1):100. https://doi.org/10.1007/s42864-022-00144-7.

    Article  Google Scholar 

  25. Ma MY, Yu HZ, Deng LM, Wang LQ, Liu SY, Pan H, Ren JW, Maximov MY, Hu F, Peng SJ. Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting. Tungsten. 2023;5(4):589. https://doi.org/10.1007/s42864-023-00212-6.

    Article  Google Scholar 

  26. Banerjee S, Kakekhani A, Wexler RB, Rappe AM. Relationship between the surface reconstruction of nickel phosphides and their activity toward the hydrogen evolution reaction. ACS Catal. 2023;13(7):4611. https://doi.org/10.1021/acscatal.2c06427.

    Article  CAS  Google Scholar 

  27. Ding X, Yu J, Huang W, Chen D, Lin W, Xie Z. Modulation of the interfacial charge density on Fe2P–CoP by coupling CeO2 for accelerating alkaline electrocatalytic hydrogen evolution reaction and overall water splitting. Chem Eng J. 2023;451(1):138550. https://doi.org/10.1016/j.cej.2022.138550.

    Article  CAS  Google Scholar 

  28. Liu SS, Ma LJ, Li JS. Dual-metal-organic-framework derived CoP/MoP hybrid as an efficient electrocatalyst for acidic and alkaline hydrogen evolution reaction. J Colloid Interface Sci. 2023;631:147. https://doi.org/10.1016/j.jcis.2022.10.165.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Di F, Wang X, Farid S, Ren S. CoS2 with carbon shell for efficient hydrogen evolution reaction. Int J Hydrog Energy. 2023;48(47):17758. https://doi.org/10.1016/j.ijhydene.2023.01.287.

    Article  CAS  Google Scholar 

  30. Zhang K, Jia J, Tan L, Qi S, Li B, Chen J, Li J, Lou Y, Guo Y. Morphological and electronic modification of NiS2 for efficient supercapacitors and hydrogen evolution reaction. J Power Sour. 2023;577: 233239. https://doi.org/10.1016/j.jpowsour.2023.233239.

    Article  CAS  Google Scholar 

  31. Bi X, Xu J, Zhang W, Tang D, Zhang K, Xin S, Zhao Z. Novel WS2/Co9S8 nanoparticles supported on N, S co-doped mesoporous carbon as efficient electrocatalyst for hydrogen evolution reaction. Chem Sel. 2023;8(25): e202300877. https://doi.org/10.1002/slct.202300877.

    Article  CAS  Google Scholar 

  32. Bang J, Moon IK, Kim YK, Oh J. Heterostructured Mo2N–Mo2C nanoparticles coupled with N-doped carbonized wood to accelerate the hydrogen evolution reaction. Small Struct. 2023;4(8):2200283. https://doi.org/10.1002/sstr.202200283.

    Article  CAS  Google Scholar 

  33. Kong F, Wu A, Wang S, Zhang X, Tian C, Fu H. The “mediated molecular”-assisted construction of MO2N islands dispersed on Co-based nanosheets for high-efficient electrocatalytic hydrogen evolution reaction. Nano Res. 2023;16:10857. https://doi.org/10.1007/s12274-023-5878-5.

    Article  ADS  CAS  Google Scholar 

  34. Zang Y, Huang S, Yang B, Chen G, Liu X, Zhang N. Constructing collaborative interface between Mo2N and NiS as efficient bifunctional electrocatalysts for overall water splitting. Appl Surf Sci. 2023;611: 155656. https://doi.org/10.1016/j.apsusc.2022.155656.

    Article  CAS  Google Scholar 

  35. Jia W, Lu Q, Zheng W, Wang K, Liu X, Yang S, He B. V-doped porous CoP nanoarrays grown on carbon cloth with optimized electronic structure for the hydrogen evolution reaction. Nanoscale Adv. 2023;5(16):4133. https://doi.org/10.1039/d3na00348e.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Z, Wang K, Li Y, Cao Y. Interface-induced electron transfer in sandwich-like hierarchical hollow CoP@NC hybrid for boosted hydrogen evolution reaction in alkaline electrolyte. J Alloys Compd. 2023;956: 170315. https://doi.org/10.1016/j.jallcom.2023.170315.

    Article  CAS  Google Scholar 

  37. Wang Z, Chi K, Yang S, Xiao J, Xiao F, Zhao X, Wang S. Optimizing the electronic structure of atomically dispersed Ru sites with CoP for highly efficient hydrogen evolution in both alkaline and acidic media. Small. 2023;19(28):2301403. https://doi.org/10.1002/smll.202301403.

    Article  CAS  Google Scholar 

  38. Zhang Y, Diao Z, Wei J, Luo M, Xie L, Huang L, Ren J, Ai N, Li L, Guo H. Bifunctional synergistic CoP/coral-like g-C3N4 catalyst: boosting the photocatalytic water splitting hydrogen evolution and appreciation of anisalcohol at same time. Appl Surf Sci. 2023;614: 156187. https://doi.org/10.1016/j.apsusc.2022.156187.

    Article  CAS  Google Scholar 

  39. Zhang XY, Zhu YR, Chen Y, Dou SY, Chen XY, Dong B, Guo BY, Liu DP, Liu CG, Chai YM. Hydrogen evolution under large-current-density based on fluorine-doped cobalt-iron phosphides. Chem Eng J. 2020;399: 125831. https://doi.org/10.1016/j.cej.2020.125831.

    Article  CAS  Google Scholar 

  40. Gao WK, Yang M, Chi JQ, Zhang XY, Xie JY, Guo BY, Wang L, Chai YM, Dong B. In situ construction of surface defects of carbon-doped ternary cobalt-nickel-iron phosphide nanocubes for efficient overall water splitting. Sci China Mater. 2019;9(62):1285. https://doi.org/10.1007/s40843-019-9434-7.

    Article  CAS  Google Scholar 

  41. Lu SS, Zhang LM, Dong YW, Zhang JQ, Yan XT, Sun DF, Shang X, Chi JQ, Chai YM, Dong B. Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(28):16859. https://doi.org/10.1039/C9TA03944A.

    Article  CAS  Google Scholar 

  42. Dong B, Li MX, Shang X, Zhou YN, Hu WH, Chai YM. Surface reconstruction through cathodic activation of first-row transition metal phosphides for enhanced hydrogen evolution. J Mater Chem A. 2022;10(34):17477. https://doi.org/10.1039/D2TA05293H.

    Article  CAS  Google Scholar 

  43. Zhou YN, Hu WH, Zhen YN, Dong B, Dong YW, Fan RY, Liu B, Liu DP, Chai YM. Metallic MoOx layer promoting high-valence Mo doping into CoP nanowires with ultrahigh activity for hydrogen evolution at 2000 mA·cm-2. Appl Catal B: Environ. 2022;309: 121230. https://doi.org/10.1016/j.apcatb.2022.121230.

    Article  CAS  Google Scholar 

  44. Xie Y, Chen M, Cai M, Teng J, Huang H, Fan Y, Barboiu M, Wang D, Su CY. Hollow cobalt phosphide with N-doped carbon skeleton as bifunctional electrocatalyst for overall water splitting. Inorg Chem. 2019;58(21):14652. https://doi.org/10.1021/acs.inorgchem.9b02333.

    Article  CAS  PubMed  Google Scholar 

  45. Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy. 2014;9:373. https://doi.org/10.1016/j.nanoen.2014.08.013.

    Article  CAS  Google Scholar 

  46. Jiang N, You B, Sheng M, Sun Y. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew Chem. 2015;127(21):6349. https://doi.org/10.1002/anie.201501616.

    Article  ADS  CAS  Google Scholar 

  47. Hu G, Tang Q, Jiang D. CoP for hydrogen evolution: implications from hydrogen adsorption. Phys Chem Chem Phys. 2016;18(34):23864. https://doi.org/10.1039/C6CP04011J.

    Article  CAS  PubMed  Google Scholar 

  48. Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen JG, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005;152(3):J23. https://doi.org/10.1149/1.1856988.

    Article  CAS  Google Scholar 

  49. Jin Z, Li P, Xiao D. Metallic Co2P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting. Green Chem. 2016;18(6):1459. https://doi.org/10.1039/C5GC02462E.

    Article  CAS  Google Scholar 

  50. Chen Z, Wu H, Li J, Wang Y, Guo W, Cao C, Chen Z. Defect enhanced CoP/Reduced graphene oxide electrocatalytic hydrogen production with Pt-like activity. Appl Catal B: Environ. 2020;265: 118576. https://doi.org/10.1016/j.apcatb.2019.118576.

    Article  CAS  Google Scholar 

  51. Zhou G, Li M, Li Y, Dong H, Sun D, Liu X, Xu L, Tian Z, Tang Y. Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting. Adv Funct Mater. 2020;30(7):1905252. https://doi.org/10.1002/adfm.201905252.

    Article  CAS  Google Scholar 

  52. Cao E, Chen Z, Wu H, Yu P, Wang Y, Xiao F, Chen S, Du S, Xie Y, Wu Y. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution. Angew Chem Int Ed. 2020;59(10):4154. https://doi.org/10.1002/anie.201915254.

    Article  CAS  Google Scholar 

  53. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45(6):1529. https://doi.org/10.1039/C5CS00434A.

    Article  CAS  PubMed  Google Scholar 

  54. Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ Sci. 2015;8(10):3022. https://doi.org/10.1039/C5EE02179K.

    Article  CAS  Google Scholar 

  55. Saadi FH, Carim AI, Verlage E, Hemminger JC, Lewis NS, Soriaga MP. CoP as an acid-stable active electrocatalyst for the hydrogen-evolution reaction: electrochemical synthesis, interfacial characterization and performance evaluation. J Phys Chem C. 2014;118(50):29294. https://doi.org/10.1021/jp5054452.

    Article  CAS  Google Scholar 

  56. Jiang P, Liu Q, Ge C, Cui W, Pu Z, Asiri AM, Sun X. CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J Mater Chem A. 2014;2(35):14634. https://doi.org/10.1039/C4TA03261F.

    Article  CAS  Google Scholar 

  57. Ha DH, Han B, Risch M, Giordano L, Yao KP, Karayaylali P, Shao-Horn Y. Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. Nano Energy. 2016;29:37. https://doi.org/10.1016/j.nanoen.2016.04.034.

    Article  CAS  Google Scholar 

  58. Wang P, Wang B. C-O-Co bond-stabilized CoP on carbon cloth toward hydrogen evolution reaction. Int J Hydrog Energy. 2022;47(15):9209. https://doi.org/10.1016/j.ijhydene.2021.12.264.

    Article  CAS  Google Scholar 

  59. Ren Y, Li Z, Deng B, Ye C, Zhang L, Wang Y, Li T, Liu Q, Cui G, Asiri AM. Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. Int J Hydrog Energy. 2022;47(6):3580. https://doi.org/10.1016/j.ijhydene.2021.11.039.

    Article  CAS  Google Scholar 

  60. Wang X, Fei Y, Chen J, Pan Y, Yuan W, Zhang LY, Guo CX, Li CM. Directionally in situ self-assembled, high-density, macropore-oriented, CoP-impregnated, 3D hierarchical porous carbon sheet nanostructure for superior electrocatalysis in the hydrogen evolution reaction. Small. 2022;18(2):2103866. https://doi.org/10.1002/smll.202103866.

    Article  CAS  Google Scholar 

  61. Zhao H, Gao G, Wang Y, Chen R, Du Y, Wang M, Li Z, Liu Y, Wang L. Growth of carbon nanotubes coated CoP as electrocatalyst for hydrogen evolution reaction under acidic and alkaline solutions. J Alloys Compd. 2022;927: 167057. https://doi.org/10.1016/j.jallcom.2022.167057.

    Article  CAS  Google Scholar 

  62. Yu M, Guo X, Chang X, Ma X, Zhang M. Assembled cobalt phosphide nanoparticles on carbon nanofibers as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. Sustain Energy Fuels. 2022;6(21):5000. https://doi.org/10.1039/D2SE01128J.

    Article  CAS  Google Scholar 

  63. Jiao L, Zhou YX, Jiang HL. Metal–organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem Sci. 2016;7(3):1690. https://doi.org/10.1039/C5SC04425A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang Z, He R, Wu H, Ding Y, Mei H. Needle-like CoP/rGO growth on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy. 2021;46(15):9690. https://doi.org/10.1016/j.ijhydene.2020.07.114.

    Article  CAS  Google Scholar 

  65. Guan X, Ma J, Li K, Liang J, Li Z, Peng W, Zhang G, Fan X, Zhang F, Li Y. Multilevel N-doped carbon nanotube/graphene supported cobalt phosphide nanoparticles for electrocatalytic hydrogen evolution reaction. Int J Hydrog Energy. 2019;44(57):30053. https://doi.org/10.1016/j.ijhydene.2019.08.163.

    Article  CAS  Google Scholar 

  66. Xu S, Qi Y, Lu Y, Sun S, Liu Y, Jiang D. Fe-doped CoP holey nanosheets as bifunctional electrocatalysts for efficient hydrogen and oxygen evolution reactions. Int J Hydrog Energy. 2021;46(52):26391. https://doi.org/10.1016/j.ijhydene.2021.05.151.

    Article  CAS  Google Scholar 

  67. Zhang L, Zhang J, Fang J, Wang XY, Yin L, Zhu W, Zhuang Z. Cr-doped CoP nanorod arrays as high-performance hydrogen evolution reaction catalysts at high current density. Small. 2021;17(28):2100832. https://doi.org/10.1002/smll.202100832.

    Article  CAS  Google Scholar 

  68. Wang X, Chen Y, Yu B, Wang Z, Wang H, Sun B, Li W, Yang D, Zhang W. Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for pH-universal hydrogen evolution. Small. 2019;15(37):1902613. https://doi.org/10.1002/smll.201902613.

    Article  CAS  Google Scholar 

  69. Zhang Y, Hui ZX, Zhou HY, Zai SF, Wen Z, Li JC, Yang CC, Jiang Q. Ga doping enables superior alkaline hydrogen evolution reaction performances of CoP. Chem Eng J. 2022;429: 132012. https://doi.org/10.1016/j.cej.2021.132012.

    Article  CAS  Google Scholar 

  70. Wang Z, Meng C, Wang J, Song Z, Yu R. Optimizing electronic and geometrical structure of vanadium doped cobalt phosphides for enhanced electrocatalytic hydrogen evolution. Eur J Inorg Chem. 2023;26(13): e202300014. https://doi.org/10.1002/ejic.202300014.

    Article  CAS  Google Scholar 

  71. Gao Y, Qian S, Wang H, Yuan W, Fan Y, Cheng N, Xue H, Jiang T, Tian J. Boron-doping on the surface mediated low-valence Co centers in cobalt phosphide for improved electrocatalytic hydrogen evolution. Appl Catal B: Environ. 2023;320: 122014. https://doi.org/10.1016/j.apcatb.2022.122014.

    Article  CAS  Google Scholar 

  72. Xu W, Fan G, Zhu S, Liang Y, Cui Z, Li Z, Jiang H, Wu S, Cheng F. Electronic structure modulation of nanoporous cobalt phosphide by carbon doping for alkaline hydrogen evolution reaction. Adv Funct Mater. 2021;31(48):2107333. https://doi.org/10.1002/adfm.202107333.

    Article  CAS  Google Scholar 

  73. Men Y, Li P, Zhou J, Cheng G, Chen S, Luo W. Tailoring the electronic structure of Co2P by N doping for boosting hydrogen evolution reaction at all pH values. ACS Catal. 2019;9(4):3744. https://doi.org/10.1021/acscatal.9b00407.

    Article  CAS  Google Scholar 

  74. Li B, Li J, Liu X, Guo J, Sun Y, Zhang X. Se-doped CoP nanoneedle arrays grown on carbon cloth for an efficient hydrogen evolution reaction. Energy Fuels. 2022;36(21):13212. https://doi.org/10.1021/acs.energyfuels.2c03124.

    Article  CAS  Google Scholar 

  75. Li MX, Ma Y, Xiao B, Zhou YN, Yu WL, Zhai XJ, Lv RQ, Chai YM, Dong BS, Fe dual doped and precisely regulated CoP porous nanoneedle arrays for efficient hydrogen evolution at 3 A·cm-2. Chem Eng J. 2023;470:144081. https://doi.org/10.1016/j.cej.2023.144081.

    Article  CAS  Google Scholar 

  76. Chen J, Li X, Ma B, Zhao X, Chen Y. CoP@Ni core-shell heterostructure nanowire array: a highly efficient electrocatalyst for hydrogen evolution. J Colloid Interface Sci. 2023;637:354. https://doi.org/10.1016/j.jcis.2023.01.108.

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Zhou Q, Sun R, Ren Y, Tian R, Yang J, Pang H, Huang K, Tian X, Xu L, Tang Y. Reactive template-derived interfacial engineering of CoP/CoO heterostructured porous nanotubes towards superior electrocatalytic hydrogen evolution. Carbon Energy. 2023;5(1): e273. https://doi.org/10.1002/cey2.273.

    Article  CAS  Google Scholar 

  78. Yu R, Du YX, Zhao HF, Cao FF, Lu WT, Zhang G. Crystalline/amorphous CoP/MnOx heterostructure derived from phase separation for electrochemical catalysis of alkaline hydrogen evolution reaction. Int J Hydrog Energy. 2023;48(7):2593. https://doi.org/10.1016/j.ijhydene.2022.10.049.

    Article  CAS  Google Scholar 

  79. Cai J, Zhang X, Pan Y, Kong Y, Lin S. MoS2||CoP heterostructure loaded on N, P-doped carbon as an efficient trifunctional catalyst for oxygen reduction, oxygen evolution, and hydrogen evolution reaction. Int J Hydrog Energy. 2021;46(69):34252. https://doi.org/10.1016/j.ijhydene.2021.07.220.

    Article  CAS  Google Scholar 

  80. Boppella R, Park J, Yang W, Tan J, Moon J. Efficient electrocatalytic proton reduction on CoP nanocrystals embedded in microporous P, N Co-doped carbon spheres with dual active sites. Carbon. 2020;156:529. https://doi.org/10.1016/j.carbon.2019.09.082.

    Article  CAS  Google Scholar 

  81. Boppella R, Tan J, Yang W, Moon J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv Funct Mater. 2019;29(6):1807976. https://doi.org/10.1002/adfm.201807976.

    Article  CAS  Google Scholar 

  82. Boppella R, Park J, Lee H, Jang G, Moon J. Hierarchically structured bifunctional electrocatalysts of stacked core–shell CoS1−xPx heterostructure nanosheets for overall water splitting. Small Methods. 2020;4(7):2000043. https://doi.org/10.1002/smtd.202000043.

    Article  CAS  Google Scholar 

  83. Liu SS, Zhu JY, Xu X, Li JS. Three-dimensional graphene-supported CoP-RuP2 with artificial heterointerfaces for an enhanced universal-pH hydrogen evolution reaction. Cryst Growth Des. 2022;22(9):5607. https://doi.org/10.1021/acs.cgd.2c00698.

    Article  CAS  Google Scholar 

  84. Gao X, Lu K, Chen J, Min J, Zhu D, Tan M. NiCoP–CoP heterostructural nanowires grown on hierarchical Ni foam as a novel electrocatalyst for efficient hydrogen evolution reaction. Int J Hydrog Energy. 2021;46(45):23205. https://doi.org/10.1016/j.ijhydene.2021.03.155.

    Article  CAS  Google Scholar 

  85. Wei Y, Li W, Li D, Yi L, Hu W. Amorphous-crystalline cobalt-molybdenum bimetallic phosphide heterostructured nanosheets as Janus electrocatalyst for efficient water splitting. Int J Hydrog Energy. 2022;47(12):7783. https://doi.org/10.1016/j.ijhydene.2021.12.106.

    Article  CAS  Google Scholar 

  86. Tan L, He R, Shi A, Xue L, Wang Y, Li H, Song X. Heterostructured CoFeP/CoP as an electrocatalyst for hydrogen evolution in alkaline media. Inorg Chem. 2023;62(25):9964. https://doi.org/10.1021/acs.inorgchem.3c01186.

    Article  CAS  PubMed  Google Scholar 

  87. Yang L, Cao X, Wang X, Wang Q, Jiao L. Regulative electronic redistribution of CoTe2/CoP heterointerfaces for accelerating water splitting. Appl Catal B: Environ. 2023;329: 122551. https://doi.org/10.1016/j.apcatb.2023.122551.

    Article  CAS  Google Scholar 

  88. Putri LK, Ng BJ, Yeo RYZ, Ong WJ, Mohamed AR, Chai SP. Engineering nickel phosphides for electrocatalytic hydrogen evolution: a doping perspective. Chem Eng J. 2023;461: 141845. https://doi.org/10.1016/j.cej.2023.141845.

    Article  CAS  Google Scholar 

  89. Zhao G, Rui K, Dou SX, Sun W. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater. 2018;28(43):1803291. https://doi.org/10.1002/adfm.201803291.

    Article  CAS  Google Scholar 

  90. Zou W, Dou K, Jiang Q, Xiang J, Kaun CC, Tang H. Nearly spherical CoP nanoparticle/carbon nanosheet hybrids: a high-performance trifunctional electrocatalyst for oxygen reduction and water splitting. RSC adv. 2019;9(68):39951. https://doi.org/10.1039/C9RA07334E.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Men Y, Li P, Zhou J, Chen S, Luo W. Trends in alkaline hydrogen evolution activity on cobalt phosphide electrocatalysts doped with transition metals. Cell Rep Phys Sci. 2020;1(8): 100136. https://doi.org/10.1016/j.xcrp.2020.100136.

    Article  CAS  Google Scholar 

  92. Men Y, Li P, Yang F, Cheng G, Chen S, Luo W. Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction. Appl Catal B Environ. 2019;253:21. https://doi.org/10.1016/j.apcatb.2019.04.038.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Huu Do.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, T.D., Do, H.H. Integrated strategies on cobalt phosphides-based electrocatalysts for efficient hydrogen evolution reaction. Tungsten (2024). https://doi.org/10.1007/s42864-024-00263-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42864-024-00263-3

Keywords

Navigation