Skip to main content

Advertisement

Log in

Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

The research for three-dimension (3D) printing carbon and carbide energy storage devices has attracted widespread exploration interests. Being designable in structure and materials, graphene oxide (GO) and MXene accompanied with a direct ink writing exhibit a promising prospect for constructing high areal and volume energy density devices. This review not only summarizes the recent advances in 3D printing energy storage devices including printing methods, ink rheological properties, and different energy storage systems, but also discusses the printing methods related to energy storage. In addition, the binder or additive free of two-dimensional carbide materials is quite important for the present electrochemical energy storage devices, which also are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2020 Nature. b IJP. Reproduced with the permission from Ref. [51]. Copyright 2019, WILEY-VCH. and c SLA. Reproduced with the permission from Ref. [24]. Copyright 2020 Springer

Fig. 3

Reproduced with the permission from Ref. [63]. Copyright 2020 WILEY-VCH. e Rheological behavior of PEDOT:PSTFSI inks measured with a shear rheometer (cone plate geometry, 50 mm diameter and 1° angle). Reproduced with the permission from Ref. [64]. Copyright 2019 American Chemical Society. f Rheological behaviors of the GO pure solution and GO gel ink. Reproduced with the permission from Ref. [65]. Copyright 2018 WILEY-VCH V. g Rheological behaviors of the Ti3C2Tx solution with different concentration. Reproduced with the permission from Ref. [59]. Copyright 2020 American Chemical Society. h, i Frequency dependency of the ratio of the G′ elastic modulus to G″ viscous modulus for single-layer Ti3C2Tx MXene flakes dispersed in water. Reproduced with the permission from Ref. [66]. Copyright 2018 American Chemical Society

Fig. 4

Copyright 2018 American Chemical Society. c Schematic illustration of 3D printing process typically with the trace amount of CaCl2 is added into the GO solution to form GO ink. d The storage modulus and loss modulus of the GO pure solution and gel ink of shear stress. e CV curves for printed electrode at scan rates from 10 to 500 mV·s−1. f The comparison of different thickness electrodes at different current density from 0.5 to 100 A·g−1. Reproduced with the permission from Ref. [65]. Copyright 2018 WILEY-VCH

Fig. 5

Copyright 2018 WILEY-VCH. gi 3D-printed asymmetric SCs device and the electrochemical performance. Reproduced with the permission from Ref. [46]. Copyright, 2019, WILEY-VCH

Fig. 6

Copyright 2016 WILEY-VCH. d Illustration of printed Li–S energy storage device. Reproduced with the permission from Ref. [93]. Copyright 2017 WILEY-VCH. e 3D printing process of the GO-based anode and cathode. f SEM images of the top view and side view of the 3D-printed N-Ti3C2Tx electrode. g Schematic diagram of charging process of N-Ti3C2Tx SIC and the cycle performance of the printed SIC at current 2 A·g−1. Reproduced with the permission from Ref. [94]. Copyright 2020 American Chemical Society

Fig. 7

Copyright 2018 American Chemical Society. h Photo of MXene aqueous ink and printed patterns. i Low and high magnification SEM image of printed interconnected MXene MSC (Scale bar 200 µm, 500 nm, respectively). j The sheet resistance, Rs with number the printed paths. k, l Extrusion-printed tandem devices with great flexibility and typical CV curves of the as-printed tandem devices. Reproduced with the permission from Ref. [51]. Copyright 2019 Nature

Fig. 8

Copyright 2021 WILEY-VCH. b Zn2+ gelation process targeting the preparation of MXene ink. c Top-view SEM images and corresponding EDS maps of the MXene. d Mass and area specific capacitance values at different current densities. e, f Schematic diagram and Ragone plots of the 3DP ZIC full cell. Reproduced with the permission from Ref. [111]. Copyright 2021 American Chemical Society

Similar content being viewed by others

References

  1. Liu XH, Jervis R, Maher RC, Villar-Garcia IJ, Naylor-Marlow M, Shearing PR, Ouyang M, Cohen L, Brandon NP, Wu B. 3D-printed structural pseudocapacitors. Adv Mater Technol. 2016;1:1600167.

    Article  Google Scholar 

  2. Wu FF, Li RY, Huang LC, Miao H, Li X. Theme evolution analysis of electrochemical energy storage research based on CitNetExplorer. Scientometrics. 2016;110:113.

    Article  Google Scholar 

  3. Guo RQ, Zhang LX, Lu Y, Zhang XL, Yang DJ. Research progress of nanocellulose for electrochemical energy storage: a review. J Energy Chem. 2020;51:342.

    Article  Google Scholar 

  4. Shinde PA, Jun SC. Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. Chemsuschem. 2020;13:11.

    Article  CAS  PubMed  Google Scholar 

  5. Egorov V, Gulzar U, Zhang Y, Breen S, Odwyer C. Evolution of 3D printing methods and materials for electrochemical energy storage. Adv Mater. 2020. https://doi.org/10.1002/adma.202000556.

    Article  PubMed  Google Scholar 

  6. Escobar B, Martínez-Casillas DC, Pérez-Salcedo KY, Rosas D, Morales L, Liao SJ, Huang LL, Shi X. Research progress on biomass-derived carbon electrode materials for electrochemical energy storage and conversion technologies. Int J Hydrogen Energy. 2021;46:26053.

    Article  CAS  Google Scholar 

  7. Brown E, Yan P, Tekik H, Elangovan A, Wang J, Lin D, Li J. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Mater Des. 2019;170: 107689.

    Article  CAS  Google Scholar 

  8. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 2018;8:1703137.

    Article  Google Scholar 

  9. Liu J, Wang BQ, Sun Q, Li RY, Sham T-K, Sun X. Atomic layer deposition of hierarchical CNTs@FePO4 architecture as a 3D electrode for lithium-ion and sodium-ion batteries. Adv Mater Interfaces. 2016;3:1600468.

    Article  Google Scholar 

  10. Gulzar U, Glynn C, Odwyer C. Additive manufacturing for energy storage Methods, designs and material selection for customizable 3D printed batteries and supercapacitors. Curr Opin Electrochem. 2020;20:46.

    Article  CAS  Google Scholar 

  11. Yuan SJ, Fan W, Wang D, Zhang LS, Miao YE, Lai FL, Liu TX. 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J Mater Chem A. 2021;9:423.

    Article  CAS  Google Scholar 

  12. Pham MH, Khazaeli A, Godbille-Cardona G, Truica-Marasescu F, Peppley B, Barz DPJ. Printing of graphene supercapacitors with enhanced capacitances induced by a leavening agent. J Energy Storage. 2020;28:101210.

    Article  Google Scholar 

  13. Wang ZS, Zhang QE, Long SC, Luo YX, Yu PK, Tan ZB, Bai J, Qu BH, Yang Y, Shi J, Zhou H, Xiao ZY, Hong WJ, Bai H. Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl Mater Interfaces. 2018;10:10437.

    Article  CAS  PubMed  Google Scholar 

  14. Li GJ, Mo XY, Law W-C, Chan KC. 3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. J Mate Chem A. 2019;7:4055.

    Article  CAS  Google Scholar 

  15. Lee HM, Muralee Gopi CVV, Rana PJS, Vinodh R, Kim S, Padma R, Kim H-J. Hierarchical nanostructured MnCo2O4–NiCo2O4 composites as innovative electrodes for supercapacitor applications. New J Chem. 2018;42:17190.

    Article  CAS  Google Scholar 

  16. Liu SM, Cai YJ, Zhao X, Liang YR, Zheng MT, Hu H, Dong HW, Jiang SP, Liu YL, Xiao Y. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. J Power Sources. 2017;360:373.

    Article  CAS  Google Scholar 

  17. Saleh MS, Li J, Park J, Panat R. 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit Manuf. 2018;23:70.

    CAS  Google Scholar 

  18. Cheng M, Jiang YZ, Yao WT, Yuan YF, Deivanayagam R, Foroozan T, Huang ZN, Song B, Rojaee R, Shokuhfar T, Pan YY, Lu J, Shahbazian-Yassar R. Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-Ion batteries. Adv Mater. 2018. https://doi.org/10.1002/adma.201800615.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ye TT, Li LH, Zhang Y. Recent progress in solid electrolytes for energy storage devices. Adv Funct Mater. 2020;30:202000077.

    Article  Google Scholar 

  20. Tian XC, Jin J, Yuan SQ, Chua CK, Tor SB, Zhou K. Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv Energy Mater. 2017;7:1700127.

    Article  Google Scholar 

  21. Cardoso RM, Kalinke C, Rocha RG, Dos Santos PL, Rocha DP, Oliveira PR, Janegitz BC, Bonacin JA, Richter EM, Munoz RA. Additive-manufactured (3D-printed) electrochemical sensors: a critical review. Anal Chim Acta. 2020;1118:73.

    Article  CAS  PubMed  Google Scholar 

  22. Chen CL, Li SP, Notten PHL, Zhang YH, Hao QL, Zhang XG, Lei W. 3D printed lithium-metal full batteries based on a high-performance three-dimensional anode current collector. ACS Appl Mater Interfaces. 2021;13:24785.

    Article  CAS  PubMed  Google Scholar 

  23. Kong DZ, Wang Y, Huang SZ, Zhang B, Lim YV, Sim GJ, YaP V, Ge Q, Yang HY. 3D printed compressible quasi-solid-state nickel-iron battery. ACS Nano. 2020;14:9675.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng M, Deivanayagam R, Shahbazian-Yassar R. 3D Printing of electrochemical energy storage devices: a review of printing techniques and electrode/electrolyte architectures. Batter Supercaps. 2020;3:130.

    Article  CAS  Google Scholar 

  25. Wang JW, Sun Q, Gao XJ, Wang CH, Li WH, Holness FB, Zheng M, Li RY, Price AD, Sun X, Sham TK, Sun XL. Toward high areal energy and power density electrode for Li-Ion batteries via optimized 3D printing approach. ACS Appl Mater Interfaces. 2018;10:39794.

    Article  CAS  PubMed  Google Scholar 

  26. Chung KC, Shu MH, Wang YC, Huang JC, Lau EM. 3D printing technologies applied to the manufacturing of aircraft components. Mod Phys Lett B. 2020;34:2040018.

    Article  CAS  ADS  Google Scholar 

  27. Yan Q, Dong HH, Su J, Han JH, Song B, Wei QS, Shi YS. A review of 3D printing technology for medical applications. Eng PRC. 2018;4:729.

    CAS  Google Scholar 

  28. Park SH, Kaur M, Yun D, Kim WS. Hierarchically Designed electron paths in 3D printed energy storage devices. Langmuir. 2018;34:10897.

    Article  CAS  PubMed  Google Scholar 

  29. Qi Z, Ye JC, Chen W, Biener J, Duoss EB, Spadaccini CM, Worsley MA, Zhu C. 3D-printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv Mater Technol. 2018;3:1800053.

    Article  Google Scholar 

  30. Gao TT, Zhou Z, Yu JY, Zhao J, Wang GL, Cao DX, Ding B, Li YJ. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv Energy Mater. 2019;9:1802578.

    Article  Google Scholar 

  31. Oneil GD. Toward single-step production of functional electrochemical devices using 3D printing: progress, challenges, and opportunities. Curr Opin Electrochem. 2020;20:60.

    Article  CAS  Google Scholar 

  32. Zhang F, Wei M, Viswanathan VV, Swart B, Shao YY, Wu G, Zhou C. 3D printing technologies for electrochemical energy storage. Nano Energy. 2017;40:418.

    Article  CAS  Google Scholar 

  33. Yan K, Li J, Pan LJ, Shi Y. Inkjet printing for flexible and wearable electronics. APL Mater. 2020;8: 120705.

    Article  CAS  ADS  Google Scholar 

  34. Sajedi-Moghaddam A, Rahmanian E, Naseri N. Inkjet-printing technology for supercapacitor application: current state and perspectives. ACS Appl Mater Interfaces. 2020;12:34487.

    Article  CAS  PubMed  Google Scholar 

  35. Wei M, Zhang F, Wang W, Alexandridis P, Zhou C, Wu G. 3D direct writing fabrication of electrodes for electrochemical storage devices. J Power Sources. 2017;354:134.

    Article  CAS  Google Scholar 

  36. Kim H, Johnson J, Chavez LA, Garcia Rosales CA, Tseng T-LB, Lin Y. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing. Ceram Int. 2018;44:9037.

    Article  CAS  Google Scholar 

  37. Browne MP, Redondo E, Pumera M. 3D printing for electrochemical energy applications. Chem Rev. 2020;120:2783.

    Article  CAS  PubMed  Google Scholar 

  38. Nofal M, Pan Y, Al-Hallaj S. Selective laser sintering of phase change materials for thermal energy storage applications. Procedia Manuf. 2017;10:851.

    Article  Google Scholar 

  39. Gao WL, Pumera M. 3D printed nanocarbon frameworks for Li-ion battery cathodes. Adv Funct Mater. 2021;31:2007285.

    Article  CAS  Google Scholar 

  40. Foster CW, Down MP, Zhang Y, Ji X, Rowley-Neale SJ, Smith GC, Kelly PJ, Banks CE. 3D printed graphene based energy storage devices. Sci Rep. 2017;7:42233.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  41. Ghosh K, Pumera M. MXene and MoS3- x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods. 2021. https://doi.org/10.1002/adma.202100451.

    Article  PubMed  Google Scholar 

  42. Chang P, Mei H, Zhou SX, Dassios KG, Cheng LF. 3D printed electrochemical energy storage devices. J Mater Chem A. 2019;7:4230.

    Article  CAS  Google Scholar 

  43. Cha H, Lee Y, Kim J, Park M, Cho J. Flexible 3D interlocking lithium-ion batteries. Adv Energy Mater. 2018;8:1801917.

    Article  Google Scholar 

  44. Zhang W, Liu HZ, Zhang XN, Li XJ, Zhang GH, Cao P. 3D printed micro-electrochemical energy storage devices: from design to integration. Adv Funct Mater. 2021;31:2104909.

    Article  CAS  Google Scholar 

  45. Zhang QH, Zhou JQ, Chen ZH, Xu C, Tang W, Yang GZ, Lai CY, Xu QJ, Yang JH, Peng CX. Direct ink writing of moldable electrochemical energy storage devices: ongoing progress, challenges, and prospects. Adv Eng Mater. 2021;23:2100068.

    Article  CAS  Google Scholar 

  46. Zhao JX, Zhang Y, Zhao XX, Wang RT, Xie JX, Yang CF, Wang JJ, Zhang QC, Li LL, Lu CH, Yao YG. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv Funct Mater. 2019;29:1900809.

    Article  Google Scholar 

  47. Yu LH, Li WP, Wei CH, Yang QF, Shao YL, Sun JY. 3D Printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nanomicro Lett. 2020;12:143.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Li B, Hu NT, Su YJ, Yang Z, Shao F, Li G, Zhang CR, Zhang YF. Direct inkjet printing of aqueous inks to flexible all-solid-state graphene hybrid micro-supercapacitors. ACS Appl Mater Interfaces. 2019;11:46044.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang YZ, Cheng M, Shahbazian-Yassar R, Pan Y. Direct ink writing of wearable thermoresponsive supercapacitors with rGO/CNT composite electrodes. Adv Mater Technol. 2019;4:1900691.

    Article  CAS  Google Scholar 

  50. Yang PH, Fan HJ. Inkjet and extrusion printing for electrochemical energy storage: a minireview. Adv Mater Technol. 2020;5:2000217.

    Article  CAS  Google Scholar 

  51. Zhang CJ, Mckeon L, Kremer MP, Park SH, Ronan O, Seral-Ascaso A, Barwich S, Coileain CO, Mcevoy N, Nerl HC, Anasori B, Coleman JN, Gogotsi Y, Nicolosi V. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun. 2019;10:1795.

    Article  PubMed  ADS  Google Scholar 

  52. Chen C, Jiang JM, He WJ, Lei W, Hao QL, Zhang XG. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv Funct Mater. 2020;30:1909469.

    Article  CAS  Google Scholar 

  53. Pang YK, Cao YT, Chu YH, Liu MH, Snyder K, Mackenzie D, Cao CY. Additive manufacturing of batteries. Adv Funct Mater. 2019;30:1906244.

    Article  Google Scholar 

  54. Huang JG, Qin Q, Wang J. A review of stereolithography: processes and systems. Processes. 2020;8:1138.

    Article  CAS  Google Scholar 

  55. Kanai T, Tsuchiya M. Microfluidic devices fabricated using stereolithography for preparation of monodisperse double emulsions. Chem Eng J. 2016;290:400.

    Article  CAS  Google Scholar 

  56. Bartolomeua F, Buciumeanub M, Pintoc E, et al. 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Addit. Manuf. 2017;16:81–89.

  57. Nagarajan B, Hu ZH, Song X, Zhai W, Wei J. Development of micro selective laser melting: the state of the art and future perspectives. Eng PRC. 2019;5:702.

    CAS  Google Scholar 

  58. Ambrosi A, Moo JGS, Pumera M. Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv Funct Mater. 2016;26:698.

    Article  CAS  Google Scholar 

  59. Zhao JX, Lu HY, Zhao XX, Malyi OI, Peng JH, Lu CH, Li XF, Zhang YY, Zeng ZY, Xing GC, Tang YX. Printable ink design towards customizable miniaturized energy storage devices. ACS Mater Lett. 2020;2:1041.

    Article  CAS  Google Scholar 

  60. Wang YL, Wang GL, Cao CY, Zhang Y, Tang C, Liu HG, Shen JF, Li L. 3D printable ink for double-electrical-layer-enhanced electrode of microsupercapaitors. J Power Sources. 2021;512:230468.

    Article  CAS  Google Scholar 

  61. Park S, Nenov NS, Ramachandran A, Chung K, Hoon Lee S, Yoo J, Yeo J-G, Bae C-J. Development of highly energy densified ink for 3D printable batteries. Energy Technol. 2018;6:2058.

    Article  CAS  Google Scholar 

  62. Moser S, Kenel C, Wehner LA, Spolenak R, Dunand DC. 3D ink-printed, sintered porous silicon scaffolds for battery applications. J Power Sources. 2021;507:230298.

    Article  CAS  Google Scholar 

  63. Zhang YZ, Wang Y, Jiang Q, El-Demellawi JK, Kim H, Alshareef HN. MXene printing and patterned coating for device applications. Adv Mater. 2020. https://doi.org/10.1002/adma.201908486.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Glasser A, Cloutet E, Hadziioannou G, Kellay H. Tuning the rheology of conducting polymer inks for various deposition processes. Chem Mater. 2019. https://doi.org/10.1021/acs.chemmater.9b01387.

    Article  Google Scholar 

  65. Jiang YQ, Xu Z, Huang TQ, Liu YJ, Guo F, Xi JB, Gao WW, Gao C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv Funct Mater. 2018;28:1707024.

    Article  Google Scholar 

  66. Akuzum B, Maleski K, Anasori B, Lelyukh P, Alvarez NJ, Kumbur EC, Gogotsi Y. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano. 2018;12:2685.

    Article  CAS  PubMed  Google Scholar 

  67. Yang WJ, Yang J, Byun JJ, Moissinac FP, Xu J, Haigh SJ, Domingos M, Bissett MA, Dryfe RAW, Barg S. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv Mater. 2019. https://doi.org/10.1002/adma.201902725.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lin LY, Ning HM, Song SF, Xu CH, Hu N. Flexible electrochemical energy storage: the role of composite materials. Compos Sci Technol. 2020;192:108102.

    Article  CAS  Google Scholar 

  69. Xu ZC, Zhang FQ, Zhang MY, Wang P. Energy storage development trends and key issues for future energy system modeling. IOP Conf Ser: Earth Environ Sci. 2020;526:0121141.

    Google Scholar 

  70. Rincón RA, Heydenrych G. Batteries and supercaps: the future of electrochemical energy storage. Batter Supercaps. 2018;1:3.

    Article  Google Scholar 

  71. Wang CG, Zhao SS, Song XX, Wang NN, Peng HL, Su J, Zeng SY, Xu XJ, Yang J. Suppressed dissolution and enhanced desolvation in core-shell MoO3@TiO2 nanorods as a high-rate and long-life anode material for proton batteries. Adv Energy Mater. 2022;12:2200157.

    Article  CAS  Google Scholar 

  72. Ma HY, Chen HW, Hu YJ, Yang BJ, Feng JZ, Xu YT, Sun YL, Cheng HH, Li C, Yan XB, Qu LT. Aqueous rocking-chair aluminum-ion capacitors enabled by a self-adaptive electrochemical pore-structure remolding approach. Energy Environ. 2022;15:1131.

    Article  CAS  Google Scholar 

  73. Kang WB, Zeng L, Ling SW, Zhang CH. 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv Energy Mater. 2021;11:2100020.

    Article  CAS  Google Scholar 

  74. Tagliaferri S, Nagaraju G, Panagiotopoulos A, Och M, Cheng G, Iacoviello F, Mattevi C. Aqueous inks of pristine graphene for 3D printed microsupercapacitors with high capacitance. ACS Nano. 2021;15:15342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu C, Liu TY, Qian F, Chen W, Chandrasekaran S, Yao B, Song Y, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today. 2017;15:107.

    Article  CAS  Google Scholar 

  76. Lee HC, Liu WW, Chai SP, Mohamed AR, Aziz A, Khe C-S, Hidayah NMS, Hashim U. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 2017;7:15644.

    Article  CAS  ADS  Google Scholar 

  77. Yao B, Chandrasekaran S, Zhang H, Ma A, Kang J, Zhang L, Lu X, Qian F, Zhu C, Duoss EB, Spadaccini CM, Worsley MA, Li Y. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv Mater. 2020. https://doi.org/10.1002/adma.201906652.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lacey SD, Kirsch DJ, Li Y, Morgenstern JT, Zarket BC, Yao YG, Dai J, Garcia LQ, Liu BY, Gao TT, Xu SM, Raghavan SR, Connell JW, Lin Y, Hu LB. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv Mater. 2018. https://doi.org/10.1002/adma.201705651.

    Article  PubMed  Google Scholar 

  79. Gu YF, Zhang Y, Shi YH, Zhang LF, Xu XH. 3D all printing of polypyrrole nanotubes for high mass loading flexible supercapacitor. ChemistrySelect. 2019;4:10902.

    Article  CAS  Google Scholar 

  80. Areir M, Xu Y, Harrison D, Fyson J. 3D printing of highly flexible supercapacitor designed for wearable energy storage. Mater Sci Eng B. 2017;226:29.

    Article  CAS  Google Scholar 

  81. Aeby X, Poulin A, Siqueira G, Hausmann MK, Nystrom G. Fully 3D printed and disposable paper supercapacitors. Adv Mater. 2021. https://doi.org/10.1002/adma.202101328.

    Article  PubMed  Google Scholar 

  82. Wang YY, Wang ZJ, Yu XL, Li BH, Kang FY, He YB. Hierarchically structured carbon nanomaterials for electrochemical energy storage applications. J Mater Res. 2018;33:1058.

    Article  CAS  ADS  Google Scholar 

  83. Ni JF, Li Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater. 2016;6:1600278.

    Article  Google Scholar 

  84. Roman J, Neri W, Fierro V, Celzard A, Bentaleb A, Ly I, Zhong J, Derre A, Poulin P. Lignin-graphene oxide inks for 3D printing of graphitic materials with tunable density. Nano Today. 2020;33:100881.

    Article  CAS  Google Scholar 

  85. Tang XW, Zhou H, Cai ZC, Cheng DD, He PS, Xie PW, Zhang D, Fan TX. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano. 2018;12:3502.

    Article  CAS  PubMed  Google Scholar 

  86. Yao B, Chandrasekaran S, Zhang J, Xiao W, Qian F, Zhu C, Duoss EB, Spadaccini CM, Worsley MA, Li Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule. 2019;3:459.

    Article  CAS  Google Scholar 

  87. Shen K, Ding JW, Yang SB. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv Energy Mater. 2018;8:1800408.

    Article  Google Scholar 

  88. Balducci A. Ionic liquids in lithium-ion batteries. Top Curr Chem (Cham). 2017;375:20.

    Article  PubMed  Google Scholar 

  89. Tang YW, Lee JM, Fu GT. ChemElectroChem: beyond lithium-ion batteries. ChemElectroChem. 2021;8:1149.

    Article  CAS  Google Scholar 

  90. Jin S, Jiang Y, Ji HX, Yu Y. Advanced 3D current collectors for lithium-based batteries. Adv Mater. 2018. https://doi.org/10.1002/adma.201802014.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA. 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater. 2013;25:4539.

    Article  CAS  PubMed  Google Scholar 

  92. Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J, Lacey S, Wang Y, Wan J, Li T, Wang Z, Xu Y, Hu L. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater. 2016;28:2587.

    Article  CAS  PubMed  Google Scholar 

  93. Shen K, Mei HL, Li B, Ding JW, Yang SB. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv Energy Mater. 2017;8:1701527.

    Article  Google Scholar 

  94. Fan ZD, Wei CH, Yu LH, Xia Z, Cai JS, Tian ZN, Zou GF, Dou SX, Sun JY. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano. 2020;14:867.

    Article  PubMed  Google Scholar 

  95. Zhang TY, Ran F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv Funct Mater. 2021;31:2010041.

    Article  CAS  Google Scholar 

  96. Zhu S, Wang CD, Shou HW, Zhang PJ, Wan P, Guo X, Yu Z, Wang WJ, Chen SM, Chu WS, Song L. In situ architecting endogenous heterojunction of MoS2 coupling with Mo2 CTx MXenes for optimized Li(+) storage. Adv Mater. 2022. https://doi.org/10.1002/adma.202108809.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lu CX, Li AR, Li GZ, Yan Y, Zhang MY, Yang QL, Zhou W, Guo L. S-Decorated porous Ti3 C2 MXene combined with in situ forming Cu2Se as effective shuttling interrupter in Na-Se batteries. Adv Mater. 2021. https://doi.org/10.1002/adma.202008414.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kayali E, Vahidmohammadi A, Orangi J, Beidaghi M. Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage. ACS Appl Mater Interfaces. 2018;10:25949.

    Article  CAS  PubMed  Google Scholar 

  99. Li XR, Li HP, Fan XQ, Shi XL, Liang JJ. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv Energy Mater. 2020;10:1903794.

    Article  CAS  Google Scholar 

  100. Yu LH, Fan ZD, Shao YL, Tian ZN, Sun JY, Liu ZF. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv Energy Mater. 2019;9:1901839.

    Article  Google Scholar 

  101. Zheng SH, Wang H, Das P, Zhang Y, Cao YX, Ma JX, Liu SF, Wu ZS. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv Mater. 2021. https://doi.org/10.1002/adma.202005449.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhang CJ, Park SH, Seral-Ascaso A, Barwich S, Mcevoy N, Boland CS, Coleman JN, Gogotsi Y, Nicolosi V. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat Commun. 2019;10:849.

    Article  PubMed  ADS  Google Scholar 

  103. Deng YQ, Shang TX, Wu ZT, Tao Y, Luo C, Liang JC, Han DL, Lyu R, Qi CS, Lv W, Kang FY, Yang QH. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv Mater. 2019. https://doi.org/10.1002/adma.201902432.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wang Q, Zhou YH, Zhao X, Chen K, Bingni G, Yang T, Zhang HT, Yang WQ, Chen J. Tailoring carbon nanomaterials via a molecular scissor. Nano Today. 2021;36:101033.

    Article  CAS  Google Scholar 

  105. Wang Q, Liu FY, Jin ZY, Qiao XR, Huang HC, Chu X, Xiong D, Zhang HT, Liu Y, Yang WQ. Hierarchically divacancy defect building dual-activated porous carbon fibers for high-performance energy-storage devices. Adv Funct Mater. 2020;30:2002580.

    Article  CAS  Google Scholar 

  106. Wang Q, Chen YY, Jiang X, Qiao XR, Wang YH, Zhao HB, Pu B, Yang WQ. Self-assembly defect-regulating superstructured carbon. Energy Stor Mater. 2022;48:164.

    Google Scholar 

  107. Down MP, Martínez-Periñán E, Foster CW, Lorenzo E, Smith GC, Banks CE. Next-generation additive manufacturing of complete standalone sodium-ion energy storage architectures. Adv Energy Mater. 2019;9:1803019.

    Article  Google Scholar 

  108. Wang D, Han CP, Mo F, Yang Q, Zhao YW, Li Q, Liang GJ, Dong BB, Zhi C. Energy density issues of flexible energy storage devices. Energy Stor Mater. 2020;28:264.

    Google Scholar 

  109. Orangi J, Hamade F, Davis VA, Beidaghi M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano. 2020;14:640.

    Article  CAS  PubMed  Google Scholar 

  110. Jagadale AD, Rohit RC, Shinde SK, Kim DY. Materials development in hybrid zinc-ion capacitors. ChemNanoMat. 2021;7:1082.

    Article  CAS  Google Scholar 

  111. Fan ZD, Jin J, Li C, Cai JS, Wei CH, Shao YL, Zou GF, Sun JY. 3D-printed Zn-Ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano. 2021;15:3098.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Research Project in Universities of Anhui Province in China (No. K J2020A0727), the Key Discipline of Material Science and Engineering of Suzhou University (No.2017XJZDXK3), the Doctor of Suzhou University Scientific Research Foundation Project (No.2020BS014), the Graduate Research and Innovation Fund of Suzhou University (No.2021KYCX11), the platform of Suzhou University (No.2021XJPT16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang-Hao Yu or Guang Zhu.

Ethics declarations

Conflict of interest

The authors declare no interest conflict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, LH., Tao, X., Feng, SR. et al. Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten 6, 196–211 (2024). https://doi.org/10.1007/s42864-022-00181-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00181-2

Keywords

Navigation