Skip to main content
Log in

An overview on the novel heat-resistant ferritic stainless steels

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Heat-resistant ferritic stainless steels are widely used in many high-temperature applications such as power plants, automotive exhaust manifolds and solid oxide fuel cell interconnects due to their low price, low coefficient of thermal expansion, high thermal conductivity, high thermal fatigue resistance, high creep performance and excellent corrosion resistance. High-temperature strength, formability, high-temperature oxidation resistance and creep performance are the main evaluation criteria for the application. With the development of relevant industries, higher requirements are proposed for the performance of ferritic stainless steels. Therefore, the development of a new generation of heat-resistant ferritic stainless steel has received extensive attention. In this presentation, we summarized the research progress of heat-resistant ferritic stainless steels including high-temperature strength, formability, high-temperature oxidation resistance and creep performance. Meanwhile, some suggestions are given for alloy composition design and microstructure optimization. The future research direction of heat-resistant ferritic stainless steels also prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [20]. Copyright 2020 Elsevier

Fig. 2

Reproduced with permission from Ref. [25]. Copyright 1996 Elsevier

Fig. 3

Reproduced with permission from Ref. [10]. Copyright 2003 Elsevier

Fig. 4

Reproduced with permission from Ref. [10]. Copyright 2003 Elsevier

Fig. 5

Reproduced with permission from Ref. [20]. Copyright 2020 Elsevier

Fig. 6

Reproduced with permission from Ref. [11]. Copyright 2012 Elsevier

Fig. 7

Reproduced with permission from Ref. [42]. Copyright 2013 Elsevier

Fig. 8

Reproduced with permission from Ref. [16]. Copyright 2020 Springer Nature

Fig. 9

Reproduced with permission from Ref. [74]. Copyright 2018 Elsevier

Fig. 10

Reproduced with permission from Ref. [74]. Copyright 2018 Elsevier

Fig. 11

Reproduced with permission from Ref. [79]. Copyright 2007 Elsevier

Fig. 12

Reproduced with permission from Ref. [87]. Copyright 2011 Elsevier

Similar content being viewed by others

References

  1. Gao F, Liu ZY, Liu HT, Wang GD. Evolution of through-thickness texture in ultra-purified 17%Cr ferritic stainless steels. J Iron Steel Res Int. 2013;20(4):31.

    CAS  Google Scholar 

  2. Zhang X, Fan LJ, Xu YL, Li J, Xiao XH, Jiang LZ. Texture, microstructure and mechanical properties of aluminum modified ultra-pure 429 ferritic stainless steels. Mater Des. 2013;89:626.

    Google Scholar 

  3. Lu HH, Guo HK, Liang W, Li JC, Zhang GW, Li TT. High-temperature Laves precipitation and its effects on recrystallisation behaviour and Lüders deformation in super ferritic stainless steels. Mater Charact. 2020;188:108477.

    CAS  Google Scholar 

  4. Liu HL, Ma MY, Liu LL, Wei LL, Chen LQ. Effect of hot band annealing processes on texture and formability of 19Cr2Mo1W ferritic stainless steel. Acta Metall Sin. 2019;55(5):566 (in Chinese).

    CAS  Google Scholar 

  5. Ma MY, He CL, Chen LQ, Wei LL, Misra RDK. Effect of W and Ce additions on the electrochemical corrosion behaviour of 444-type ferritic stainless steel. Corros Eng Sci Tech. 2018;53(3):199.

    CAS  Google Scholar 

  6. Fu JW, Li F, Sun JJ, Wu YC. Texture, orientation, and mechanical properties of Ti-stabilized Fe-17Cr ferritic stainless steel. Mater Sci Eng A. 2018;738:335.

    CAS  Google Scholar 

  7. Khorrami MS, Mostafaei MA, Pouraliakbar H, Kokabi AH. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints. Mater Sci Eng A. 2014;608:35.

    Google Scholar 

  8. Bai Y, He T, Liu Y. Effects of Sn microalloying on cold rolling and recrystallization textures and microstructure of a ferritic stainless steel. Mater Charact. 2018;137:142.

    CAS  Google Scholar 

  9. Wei LL, Zheng JH, Chen LQ, Misra RDK. High temperature oxidation behavior of ferritic stainless steel containing W and Ce. Corros Sci. 2018;142:79.

    CAS  Google Scholar 

  10. Fujita N, Ohmura K, Yamamoto A. Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels. Mater Sci Eng A. 2003;351(1–2):272.

    Google Scholar 

  11. Chiu YT, Lin CK. Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect. J Power Sources. 2012;198:149.

    CAS  Google Scholar 

  12. Froitzheim J, Meier GH, Niewolak L, Ennis PJ, Hattendorf H, Singheiser L, Quadakkers WJ. Development of high strength ferritic steel for interconnect application in SOFCs. J Power Sources. 2008;178(1):163.

    CAS  Google Scholar 

  13. Kuhn B, Asensio Jimenez C, Niewolak L, Hüttel T, Beck T, Hattendorf H, Singheiser L, Quadakkersa WJ. Effect of Laves phase strengthening on the mechanical properties of high Cr ferritic steels for solid oxide fuel cell interconnect application. Mater Sci Eng A. 2011;528(18):5888.

    CAS  Google Scholar 

  14. N’Dah E, Tsipas S, Hierro MP, Pérez FJ. Study of the cyclic oxidation resistance of Al coated ferritic steels with 9 and 12%Cr. Corros Sci. 2007;49(10):3850.

    Google Scholar 

  15. Han J, Li H, Zhu Z, Jiang L, Xu H, Ma L. Effects of processing optimisation on microstructure, texture, grain boundary and mechanical properties of Fe–17Cr ferritic stainless steel thick plates. Mater Sci Eng A. 2014;616:20.

    CAS  Google Scholar 

  16. Wei LL, Chen LQ, Liu HL, Han LQ, Gong N, Misra RDK. Precipitation behavior of Laves phase in the vicinity of oxide film of ferritic stainless steel: selective oxidation-induced precipitation. Oxid Met. 2020;93(1–2):195.

    CAS  Google Scholar 

  17. Tetsui T, Shindo K, Kobayashi S, Takeyama M. Strengthening a high-strength TiAl alloy by hot-forging. Intermetallic. 2003;11(4):299.

    CAS  Google Scholar 

  18. Bhowmik S, McWilliams BA, Knezevic M. Effect of powder reuse on tensile, compressive, and creep strength of Inconel 718 fabricated via laser powder bed fusion. Mater Charact. 2022;190:112023.

    CAS  Google Scholar 

  19. Guo R, Liu B, Xu R, Cao Y, Qiu J, Chen F, Yan Z, Liu Y. Microstructure and mechanical properties of powder metallurgy high temperature titanium alloy with high Si content. Mater Sci Eng A. 2020;777:138993.

    CAS  Google Scholar 

  20. Liu H, Wei L, Ma M, Zheng J, Chen L, Misra RDK. Laves phase precipitation behavior and high-temperature strength of W-containing ferritic stainless steels. J Mater Res Technol. 2020;9(2):2127.

    CAS  Google Scholar 

  21. Wang J, Zhang Y, Ma J, Li J, Zhang Z. Microcrack nucleation and propagation investigation of Inconel 740H alloy under in situ high temperature tensile test. Acta Metall Sin. 2017;53(12):1627.

    Google Scholar 

  22. Juuti T, Rovatti L, Porter D, Angella G, Kömi J. Factors controlling ambient and high temperature yield strength of ferritic stainless steel susceptible to intermetallic phase formation. Mater Sci Eng A. 2018;726:45.

    CAS  Google Scholar 

  23. Zhang Y. Numerical study of creep behavior of P91 steel at elevated temperature. Northwest Univ. 2019;48:446 ((in Chinese)).

    Google Scholar 

  24. Masuyama F. History of power plants and progress in heat resistant steels. ISIJ Int. 2001;41(6):612.

    CAS  Google Scholar 

  25. Fujita N, Ohmura K, Kikuchi M, Suzuki T, Funaki S, Hiroshige I. Effect of Nb on high-temperature properties for ferritic stainless steel. Scripta Mater. 1996;35(6):705.

    CAS  Google Scholar 

  26. Miyazaki A, Takao K, Furukimi O. Effect of Nb on the proof strength of ferritic stainless steels at elevated temperatures. ISIJ Int. 2002;42(8):916.

    CAS  Google Scholar 

  27. Sim GM, Ahn JC, Hong SC, Lee KJ, Lee KS. Effect of Nb precipitate coarsening on the high temperature strength in Nb containing ferritic stainless steels. Mater Sci Eng A. 2005;396(1–2):159.

    Google Scholar 

  28. Nabiran N, Klein S, Weber S, Theisen W. Evolution of the Laves phase in ferritic heat-resistant steels during long-term annealing and its influence on the high-temperature strength. Metall Mater Trans A. 2014;46(1):102.

    Google Scholar 

  29. Miyazaki A, Hirasawa J, Furukimi O. Ferritic stainless steel for automotive exhaust systems–High heat-resistant ferritic stainless steel with high formability for automotive exhaust manifolds: “JFE-MH1.” JFE Technical Report. 2004;4:61.

    Google Scholar 

  30. Miyazaki A, Gunzi M, Yoshioka K. High formability R429EX and heat-resistant R444EX stainless steels for automotive exhaust manifold. Kawasaki Steel Technical Report. 1994;31:21.

    Google Scholar 

  31. Liu T, Chen L, Bi H, Che X. Effect of Mo on high-temperature fatigue behavior of 15CrNbTi ferritic stainless steel. Acta Metall Sin (EngL Lett). 2017;27(3):452.

    CAS  Google Scholar 

  32. Abe F. Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels. Mater Sci Eng A. 2001;319–321:770.

    Google Scholar 

  33. Yazawa Y, Ozaki Y, Kato Y, Furukimi O. Development of ferritic stainless steel sheets with excellent deep drawability by {111} recrystallization texture control. JASE Rev. 2003;24(4):483.

    CAS  Google Scholar 

  34. Yan H, Bi H, Lin X, Xu Z. Microstructure, texture and grain boundaries character distribution evolution of ferritic stainless steel during rolling process. J Mater Process Tech. 2009;209(5):2627.

    CAS  Google Scholar 

  35. Hamada JI, Ono N, Inoue H. Effect of texture on r-value of ferritic stainless steel sheets. ISIJ Int. 2011;51(10):1740.

    CAS  Google Scholar 

  36. Yazawa Y, Kato Y, Kobayashi M. Development of Ti-bearing high performance ferritic stainless steels R430XT and RSX-1. Kawasaki Steel Technical Report. 1999;40:23.

    Google Scholar 

  37. Fu J, Cui K, Li F, Wang J, Wu Y. Texture and anisotropic mechanical properties of ferritic stainless steel stabilized with Ti and Nb. Mater Charact. 2020;159:110027.

    CAS  Google Scholar 

  38. Kang Y, Mao WM, Chen YJ, Jing J, Cheng M. Effect of Ti content on grain size and mechanical properties of UNS S44100 ferritic stainless steel. Mater Sci Eng A. 2016;677:211.

    CAS  Google Scholar 

  39. Du W, Jiang LZ, Sun QS, Liu ZY, Zhang X. Microstructure, texture, and formability of Nb+Ti stabilized high purity ferritic stainless steel. J Iron Steel Res Int. 2010;17(6):47.

    CAS  Google Scholar 

  40. Zhang C, Liu Z, Wang G. Effects of hot rolled shear bands on formability and surface ridging of an ultra purified 21%Cr ferritic stainless steel. J Mater Process Tech. 2011;211(6):1051.

    CAS  Google Scholar 

  41. Liu HL, Liu LL, Ma MY, Chen LQ. Influence of finish rolling temperature on microstructure and mechanical properties of a 19Cr1.5Mo0.5W ferritic stainless steel. Acta Metall Sin (EngL Lett). 2020;33(7):991.

    CAS  Google Scholar 

  42. Gao F, Liu Z, Liu H, Wang G. Texture evolution and formability under different hot rolling conditions in ultra purified 17%Cr ferritic stainless steels. Mater Charact. 2013;75:93.

    CAS  Google Scholar 

  43. Davison RM. Formability of low-interstitial 18 Pct Cr-2 Pct Mo ferritic stainless steel. Metall Mater Trans B. 1974;5(11):2287.

    CAS  Google Scholar 

  44. Wang WT, Zhang J, Sui FL, Zhang ZX, Bi HY. A comparison of deformation, microstructure, mechanical properties and formability of SUS436L stainless steel in tandem and reversible cold rolling processes. J Iron Steel Res Int. 2019;26(5):442.

    CAS  Google Scholar 

  45. Shu J, Bi H, Li X, Xu Z. Effect of hot band annealing on forming limit diagrams of ultra-pure ferritic stainless steel. J Mater Eng Perform. 2014;23(3):982.

    CAS  Google Scholar 

  46. Bai Y, He T, Guo D, Liu XT, Shao FY, Liu YD. Texture evolution, formability and ridging resistance of a Sn-bearing ferritic stainless steel under different hot band annealing temperatures. Acta Metall Sin (EngL Lett). 2019;32(11):1362.

    CAS  Google Scholar 

  47. Čížek J, Janeček M, Krajňák T, Stráská J, Hruška P, Gubicza J, Kim HS. Structural characterization of ultrafine-grained interstitial-free steel prepared by severe plastic deformation. Acta Mater. 2016;105:258.

    Google Scholar 

  48. Ma X, Zhao J, Du W, Zhang X, Jiang L, Jiang Z. An analysis of ridging of ferritic stainless steel 430. Mater Sci Eng A. 2017;658:358.

    Google Scholar 

  49. Zhang C, Zhang LW, Liu ZY. Improvement of surface ridging resistance of an ultra-purified ferritic stainless steel by optimizing hot rolling condition. Acta Metall Sin (EngL Lett). 2016;29(6):561.

    CAS  Google Scholar 

  50. Shu J, Bi H, Li X, Xu Z. Effect of Ti addition on forming limit diagrams of Nb-bearing ferritic stainless steel. J Mater Process Tech. 2012;212(1):59.

    CAS  Google Scholar 

  51. Tanure L, de Alcântara CM, Santos DB, de Oliveira TR, Gonzalez BM, Verbeken K. Microstructural characterization and mechanical behavior during recrystallization annealing of Nb-stabilized type ASTM 430 and Nb-Ti-stabilized ASTM 439 ferritic stainless steels. J Mater Res Tech. 2019;8(5):4048.

    CAS  Google Scholar 

  52. Villafuerte JC, Pardo E, Kerr HW. The effect of alloy composition and welding conditions on columnar-equiaxed transitions in ferritic stainless steel gas-tungsten arc welds. Metall Trans A. 1990;21(7):2009.

    Google Scholar 

  53. Yazawa Y, Muraki M, Kato Y, Furukimi O. Effect of chromium content on relationship between r-value and 111 recrystallization texture in ferritic steel. ISIJ Int. 2003;43(10):1647.

    CAS  Google Scholar 

  54. Liu H, Zheng J, Ma M, Wei L, Chen L. Structure-mechanical property-formability relationships for 444-type W-containing ferritic stainless steels. J Mater Eng Perform. 2021;30(1):467.

    CAS  Google Scholar 

  55. Huh MY, Engler O. Effect of intermediate annealing on texture, formability and ridging of 17%Cr ferritic stainless steel sheet. Mater Sci Eng A. 2001;308(1–2):74.

    Google Scholar 

  56. Brady MP, Tortorelli PF. Alloy design of intermetallics for protective scale formation and for use as precursors for complex ceramic phase surfaces. Intermetallics. 2004;12(7–9):779.

    CAS  Google Scholar 

  57. Alnegren P, Sattari M, Froitzheim J, Svensson JE. Degradation of ferritic stainless steels under conditions used for solid oxide fuel cells and electrolyzers at varying oxygen pressures. Corros Sci. 2016;110:200.

    CAS  Google Scholar 

  58. Cheng X, Jiang Z, Wei D, Zhao J, Monaghan BJ, Longbottom RJ, Jiang L. Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere. Surf Coat Technol. 2015;258:257.

    Google Scholar 

  59. Galerie A, Henry S, Wouters Y, Mermoux M, Petit JP, Antoni L. Mechanisms of chromia scale failure during the course of 15–18Cr ferritic stainless steel oxidation in water vapour. Mater High Temp. 2005;22(1–2):105.

    CAS  Google Scholar 

  60. Chen X, Hou PY, Jacobson CP, Visco SJ, De Jonghe LC. Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties. Solid State Ionics. 2005;176(5–6):425.

    CAS  Google Scholar 

  61. Inoue Y, Hiraide N, Hayashi A, Ushioda K. Effect of titanium on oxidation behavior of high-purity ferritic stainless steel. Mater Trans. 2019;60(9):1968.

    CAS  Google Scholar 

  62. Seo HS, Yun DW, Kim KY. Effect of Ti addition on the electric and ionic property of the oxide scale formed on the ferritic stainless steel for SOFC interconnect. Int J Hydrogen Energ. 2012;37(21):16151.

    CAS  Google Scholar 

  63. Xu Y, Zhang X, Fan L, Li J, Yu X, Xiao X, Jiang L. Improved oxidation resistance of 15 wt.% Cr ferritic stainless steels containing 008–2.45 wt.% Al at 1000 °C in air. Corros Sci. 2015;100:311.

    CAS  Google Scholar 

  64. Swaminathan S, Lee YS, Kim DI. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects. J Power Sources. 2016;327:104.

    CAS  Google Scholar 

  65. Yun DW, Seo HS, Jun JH, Lee JM, Kim KY. Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect. Int J Hydrogen Energ. 2012;37(13):10328.

    CAS  Google Scholar 

  66. Shu J, Bi H, Li X, Xu Z. The effects of molybdenum addition on high temperature oxidation behavior at 1000 °C of type 444 ferritic stainless steel. Oxid Met. 2012;78(3–4):253.

    CAS  Google Scholar 

  67. Safikhani A, Esmailian M, Tinatiseresht T, Darband GB. High temperature cyclic oxidation behavior of ferritic stainless steel with addition of alloying elements Nb and Ti for use in SOFCs interconnect. Int J Hydrogen Energ. 2016;41(14):6045.

    CAS  Google Scholar 

  68. Ali-Löytty H, Hannula M, Juuti T, Niu Y, Zakharov AA, Valden M. The role of (FeCrSi)2(MoNb)-type Laves phase on the formation of Mn-rich protective oxide scale on ferritic stainless steel. Corros Sci. 2018;132:214.

    Google Scholar 

  69. Pint BA. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met. 1996;45(1–2):1–37.

    CAS  Google Scholar 

  70. Cheng X, Jiang Z, Monaghan BJ, Wei D, Longbottom RJ, Zhao J, Peng J, Luo M, Ma L, Luo S, Jiang L. Breakaway oxidation behaviour of ferritic stainless steels at 1150 °C in humid air. Corros Sci. 2016;108:11.

    CAS  Google Scholar 

  71. Gindorf C, Singheiser L, Hilpert K. Vaporisation of chromia in humid air. J Phys Chem Solids. 2005;66(2–4):384.

    CAS  Google Scholar 

  72. Yoon YS, Lee J, Hwang HJ, Whang CM, Moon JW, Kim DH. Lanthanum oxide-coated stainless steel for bipolar plates in solid oxide fuel cells (SOFCs). J Power Sources. 2008;181(2):281.

    CAS  Google Scholar 

  73. Yang Z, Xia GG, Li XH, Stevenson JW. (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int J Hydrogen Energ. 2007;32(16):3648.

    CAS  Google Scholar 

  74. Wei LL, Chen LQ, Ma MY, Liu HL, Misra RDK. Oxidation behavior of ferritic stainless steels in simulated automotive exhaust gas containing 5 vol.% water vapor. Mater Chem Phys. 2018;205:508.

    CAS  Google Scholar 

  75. Holzer I, Kozeschnik E, Cerjak H. New approach to predict the long-term creep behaviour and evolution of precipitate back-stress of 9–12% chromium steels. Trans Indian Inst Met. 2010;63:137.

    CAS  Google Scholar 

  76. Paul VT, Saroja S, Vijayalakshmi M. Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures. J Nucl Mater. 2008;378(3):273.

    Google Scholar 

  77. Wang H, Yan W, van Zwaag S, Shi Q, Wang W, Yang K, Shan Y. On the 650 °C thermostability of 9–12Cr heat resistant steels containing different precipitates. Acta Mater. 2017;134(1):143.

    CAS  Google Scholar 

  78. Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci Technol Adv Mater. 2008;9(1):013002.

    Google Scholar 

  79. Abe F, Taneike M, Sawada K. Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int J Pres Ves Pip. 2007;84(1–2):3.

    CAS  Google Scholar 

  80. Abe F, Nakazawa S. The effect of tungsten on creep behavior of tempered martensitic 9Cr steel. Metall Mater Trans A. 1992;23(11):3025.

    Google Scholar 

  81. Lee KH, Suh JY, Hong SM, Huh JY, Jung WS. Microstructural evolution and creep-rupture life estimation of high-Cr martensitic heat-resistant steels. Mater Charact. 2015;106:266.

    CAS  Google Scholar 

  82. Pešička J, Aghajani A, Somsen C, Hartmaier A, Eggeler G. How dislocation substructures evolve during long-term creep of a 12% Cr tempered martensitic ferritic steel. Scr Mater. 2010;62(6):353.

    Google Scholar 

  83. Varin RA, Haftek J. Structural changes in a ferritic heat-resistant steel after long-term service. Mater Sci Eng. 1984;62(1):129.

    CAS  Google Scholar 

  84. Pöpperlová J, Fan X, Kuhn B, Bleck W, Krupp U. Impact of tungsten on thermomechanically induced precipitation of Laves phase in high performance ferritic (HiperFer) stainless steels. Appl Sci. 2020;10(13):4472.

    Google Scholar 

  85. Toda Y, Tohyama H, Kushima H, Kimura K, Abe F. Improvement in creep strength of precipitation strengthened 15Cr ferritic steel by controlling carbon and nitrogen contents. JSME Int J. 2005;48(1):35.

    CAS  Google Scholar 

  86. Toda Y, Seki K, Kimura K, Abe F. Effect of W and Co on long-term creep strength of precipitation strengthened 15Cr ferritic heat resistant steels. ISIJ Int J. 2003;43(1):112.

    CAS  Google Scholar 

  87. Shibuya M, Toda Y, Sawada K, Kushima H, Kimura K. Effect of nickel and cobalt addition on the precipitation-strength of 15Cr ferritic steels. Mater Sci Eng A. 2011;528:5387.

    CAS  Google Scholar 

  88. Toda Y, Tohyama H, Kushima H, Kimura K, Abe F. Influence of chemical composition and heat treatment condition on impact toughness of 15Cr ferritic creep resistant steel. JSME Int J. 2005;48(3):125.

    CAS  Google Scholar 

  89. Kuhn B, Talik M, Niewolak L, Zurek J, Hattendorf H, Ennis PJ, Quadakkers WJ, Beck T, Singheiser L. Development of high chromium ferritic steels strengthened by intermetallic phases. Mater Sci Eng A. 2014;594:372.

    CAS  Google Scholar 

  90. Fan X, Kuhn B, Pöpperlová J, Bleck W, Krupp U. Compositional optimization of high-performance ferritic (HiperFer) steels—Effect of niobium and tungsten content. Metals. 2020;10(10):1300.

    CAS  Google Scholar 

  91. Pöpperlová J, Fan X, Kuhn B, Krupp U. Up-scaling of thermomechanically induced Laves phase precipitation in high performance ferritic (HiperFer) stainless steels. Materials. 2021;14(7):1635.

    Google Scholar 

  92. Kuhn B, Talik M, Fischer T, Fan X, Yamamoto Y, Barrilao JL. Science and technology of high performance ferritic (HiperFer) stainless steels. Metals. 2020;10(4):463.

    CAS  Google Scholar 

  93. Barrilao JL, Kuhn B, Wessel E. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases. Micron. 2018;108:11.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the joint financial support from the National Natural Science Foundation of China and Baowu Steel Group Co., Ltd. (Grant No. U1660205) as well as the financial support from the Fundamental Research Funds for the Central Universities (No. N2002024).

Author information

Authors and Affiliations

Authors

Contributions

YZ: wrote the draft, LC: contributed to conceived the idea of the study, HL and LW: collected the data. All authors contributed to the writing and revisions.

Corresponding author

Correspondence to Li-Qing Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, HL., Wei, LL. et al. An overview on the novel heat-resistant ferritic stainless steels. Tungsten 5, 467–480 (2023). https://doi.org/10.1007/s42864-022-00171-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00171-4

Keywords

Navigation