Skip to main content

Advertisement

Log in

Embedding partial sulfurization of iron–cobalt oxide nanoparticles into carbon nanofibers as an efficient electrode for the advanced asymmetric supercapacitor

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

In this paper, a series of partially sulfurized iron–cobalt oxide (FCOS) nanoparticles were embedded in carbon nanofibers (FCOS@CNF) via a simple electrospinning method and followed by a hydrothermal sulfurization process. The sulfurization degree of iron–cobalt oxide nanoparticles can be further controlled by tuning the hydrothermal reaction time. The self-supported FCOS@CNF samples with hierarchical nanostructure can not only effectively prevent the detaching of the FCOS nanoparticles but also provide abundant electrochemical active sites. When used as a supercapacitor electrode, the FCOS@CNF-10 electrode presents a high specific capacitance (1039 F⋅g−1 at 1 A⋅g−1), a good rate performance (over 69.4% of capacitance retention from 1 to 15 A⋅g−1), and a long cycle lifespan (88.3% of capacitance retention after 4000 cycles at 10 A⋅g−1). A unique (FCOS@CNF-10//F-RGO) asymmetric supercapacitor device was assembled using the FCOS@CNF-10 sample as the positive electrode and the freeze-dried reductive graphene oxide (F-RGO) as the negative electrode. The hybrid device exhibits excellent electrochemical properties, including a high specific capacity, a long cycle life (86% after 5000 cycles at 10 A⋅g−1), and a maximum energy density of 24.2 Wh⋅kg−1@725.4 W⋅kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liang J, Zhao H, Yue L, Fan G, Li T, Lu S, Chen G, Gao S, Asiri Abdullah M, Sun X. Recent advances in electrospun nanofibers for supercapacitors. J Mater Chem A. 2020;8(33):16747.

    Article  CAS  Google Scholar 

  2. Lu X, Wang C, Favier F, Pinna N. Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv Energy Mater. 2017;7(2):1601301.

    Article  Google Scholar 

  3. Wang H, Niu H, Wang H, Wang W, Jin X, Wang H, Zhou H, Lin T. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. J Power Sources. 2021;482: 228986.

    Article  CAS  Google Scholar 

  4. Peng S, Li L, Kong Yoong Lee J, Tian L, Srinivasan M, Adams S, Ramakrishna S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy. 2016;22:361.

    Article  CAS  Google Scholar 

  5. Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem A. 2017;5(18):8155.

    Article  CAS  Google Scholar 

  6. Wang H, Wang H, Ruan F, Wei A, Feng Q. High-performance all-solid-state supercapacitor electrode materials using freestanding electrospun carbon nanofiber mats of polyacrylonitrile and novolac blends. Macromol Mater Eng. 2021;6:306.

    Google Scholar 

  7. Liu W, Zhao Y, Zheng J, Jin D, Wang Y, Lian J, Yang S, Li G, Bu Y, Qiao F. Heterogeneous cobalt polysulfide leaf-like array/carbon nanofiber composites derived from zeolite imidazole framework for advanced asymmetric supercapacitors. J Colloid Interface Sci. 2022;606:728.

    Article  CAS  Google Scholar 

  8. Alegre C, Busacca C, Di Blasi A, Di Blasi O, Aricò AS, Antonucci V, Baglio V. Toward more efficient and stable bifunctional electrocatalysts for oxygen electrodes using FeCo2O4/carbon nanofiber prepared by electrospinning. Mater Today Energy. 2020;18: 100508.

    Article  CAS  Google Scholar 

  9. Etogo C, Huang H, Hong H, Liu G, Zhang L. Metal-organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 2020;24:167.

    Article  Google Scholar 

  10. Chen S, Luo J, Li N, Han X, Wang J, Deng Q, Zeng Z, Deng S. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 2020;30:187.

    Article  Google Scholar 

  11. Hung T, Yin Z, Betzler S, Zheng W, Yang J, Zheng H. Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem Eng J. 2019;367:115.

    Article  CAS  Google Scholar 

  12. Deng C, Yang L, Yang C, Shen P, Zhao L, Wang Z, Wang C, Li J, Qian D. Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors. Appl Surf Sci. 2018;428:148.

    Article  CAS  Google Scholar 

  13. Liu Y, Wang D, Zhang C, Zhao Y, Ma P, Dong W, Huang Y, Liu T. Compressible and lightweight MXene/carbon nanofiber aerogel with “Layer-Strut” bracing microscopic architecture for efficient energy storage. Adv Fiber Mater. 2022. https://doi.org/10.1007/s42765-022-00140-z.

    Article  Google Scholar 

  14. Gu Z, Zhang X. General ion-exchanged method synthesized 3D heterostructured MCo2O4/Co3O4 nanocomposites (M = Mn, Fe, Ni, Cu and Zn). J Alloy Compd. 2018;766:796.

    Article  CAS  Google Scholar 

  15. Guo B, Bandaru S, Dai C, Chen H, Zhang Y, Xu Q, Bao S, Chen M, Xu M. Self-supported FeCo2S4 nanotube arrays as binder-free cathodes for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2018;10(50):43707.

    Article  CAS  Google Scholar 

  16. Guo X, Yang C, Huang G, He B. High-performance supercapacitors based on flower-like FexCo3xO4 electrodes. J Alloy Compd. 2018;735:184.

    Article  CAS  Google Scholar 

  17. He Q, Gu S, Wu T, Zhang S, Ao X, Yang J, Wen Z. Self-supported mesoporous FeCo2O4 nanosheets as high capacity anode material for sodium-ion battery. Chem Eng J. 2017;330:764.

    Article  CAS  Google Scholar 

  18. He X, Li R, Liu J, Liu Q, Chen R, Song D, Wang J. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem Eng J. 2018;334:1573.

    Article  CAS  Google Scholar 

  19. Wang D, Min Y, Yu Y, Peng B. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J Colloid Interface Sci. 2014;417:270.

    Article  CAS  Google Scholar 

  20. Zhao H, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Adv Sci. 2017;4(10):1700188.

    Article  Google Scholar 

  21. Wang P, Zhang G, Li M, Yin Y, Li J, Li G, Wang W, Peng W, Cao F, Guo Y. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem Eng J. 2019;375: 122020.

    Article  CAS  Google Scholar 

  22. Chen H, Hu L, Chen M, Yan Y, Wu L. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater. 2014;24(7):934.

    Article  Google Scholar 

  23. He X, Zhao Y, Chen R, Zhang H, Liu J, Liu Q, Song D, Li R, Wang J. Hierarchical FeCo2O4@polypyrrole core/shell nanowires on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. ACS Sustain Chem Eng. 2018;6(11):14945.

    Article  CAS  Google Scholar 

  24. Hu B, Wang Y, Shang X, Xu K, Yang J, Huang M, Liu J. Structure-tunable Mn3O4-Fe3O4@C hybrids for high-performance supercapacitor. J Colloid Interface Sci. 2021;581:66.

    Article  CAS  Google Scholar 

  25. Hu X, Wang R, Sun P, Xiang Z, Wang X. Tip-welded ternary FeCo2S4 nanotube arrays on carbon cloth as binder-free electrocatalysts for highly efficient oxygen evolution. ACS Sustain Chem Eng. 2019;7(24):19426.

    Article  CAS  Google Scholar 

  26. Huang X, Cai X, Xu D, Chen W, Wang S, Zhou W, Meng Y, Fang Y, Yu X. Hierarchical Fe2O3@CNF fabric decorated with MoS2 nanosheets as a robust anode for flexible lithium-ion batteries exhibiting ultrahigh areal capacity. J Mater Chem A. 2018;6(35):16890.

    Article  CAS  Google Scholar 

  27. Huang Y, Zhao Y, Bao J, Lian J, Cheng M, Li H. Lawn-like FeCo2S4 hollow nanoneedle arrays on flexible carbon nanofiber film as binder-free electrodes for high-performance asymmetric pseudocapacitors. J Alloy Compd. 2019;772:337.

    Article  CAS  Google Scholar 

  28. Javed K, Oolo M, Savest N, Krumme A. A review on graphene-based electrospun conductive nanofibers, supercapacitors, anodes, and cathodes for lithium-ion batteries. Crit Rev Solid State. 2018;44(5):427.

    Article  Google Scholar 

  29. Kumbhar V, Jagadale A, Shinde N, Lokhande C. Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl Surf Sci. 2012;259:39.

    Article  CAS  Google Scholar 

  30. Li G, Li R, Zhou W. A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nano Micro Lett. 2017;9(4):46.

    Article  Google Scholar 

  31. Li S, Wang Y, Sun J, Xu C, Chen H. Simple preparation of porous FeCo2O4 microspheres and nanosheets for advanced asymmetric supercapacitors. ACS Appl Energy Mater. 2020;3(11):11307.

    Article  CAS  Google Scholar 

  32. Qiao F, Liu W, Wang S, Lin F, Chen Y, Yuan M, Weng Z, Wang S, Zheng J, Zhao Y. Hierarchical Co3S4/CoS/MoS2 leaf-like nanoflakes array derived from Co-ZIF-L as an advanced anode for flexible supercapacitor. J Alloy Compd. 2021;870: 159393.

    Article  CAS  Google Scholar 

  33. Ranjith K, Kwak C, Hwang J, Ghoreishian S, Raju G, Huh Y, Im J, Han Y. High-performance all-solid-state hybrid supercapacitors based on surface-embedded bimetallic oxide nanograins loaded onto carbon nanofiber and activated carbon. Electrochim Acta. 2020;332: 135494.

    Article  CAS  Google Scholar 

  34. Velásquez C, Vásquez F, Alvarez-Láinez M, Zapata-González A, Calderón J. Carbon nanofibers impregnated with Fe3O4 nanoparticles as a flexible and high capacity negative electrode for lithium-ion batteries. J Alloy Compd. 2021;862: 158045.

    Article  Google Scholar 

  35. Xu D, Wang H, Qiu R, Wang Q, Mao Z, Jiang Y, Wang R, He B, Gong Y, Li D, Hu X. Coupling of bowl-like VS2 nanosheet arrays and carbon nanofiber enables ultrafast Na+-Storage and robust flexibility for sodium-ion hybrid capacitors. Energy Storage Mater. 2020;28:91.

    Article  Google Scholar 

  36. Yang Y, Liu Y, Li Y, Deng B, Yin B, Yang M. Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. J Mater Chem A. 2020;8(33):17257.

    Article  CAS  Google Scholar 

  37. Wang H, Xu D, Jia G, Mao Z, Gong Y, He B, Wang R, Fan H. Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater. 2020;25:114.

    Article  Google Scholar 

  38. Xiong P, Yang F, Ding Z, Jia Y, Liu J, Yan X, Chen X, Yang C. Preparation and electrocatalytic properties of spinel CoxFe3-xO4 nanoparticles. Int J Hydrogen Energy. 2020;45(27):13841.

    Article  CAS  Google Scholar 

  39. Zhang K, Xiong F, Zhou J, Mai L, Zhang L. Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage. Nano Energy. 2020;67: 104222.

    Article  CAS  Google Scholar 

  40. Yuksel R, Yarar Kaplan B, Bicer E, Yurum A, Alkan Gursel S, Unalan H. All-carbon hybrids for high performance supercapacitors. Int J Energy Res. 2018;42(11):3575.

    Article  CAS  Google Scholar 

  41. Luo H, Xiong P, Xie J, Yang Z, Huang Y, Hu J, Wan Y, Xu Y. Uniformly dispersed freestanding carbon nanofiber/graphene electrodes made by a scalable biological method for high-performance flexible supercapacitors. Adv Funct Mater. 2018;28(48):1803075.

    Article  Google Scholar 

  42. Li J, Zhang W, Zhang X, Huo L, Liang J, Wu L, Liu Y, Gao J, Pang H, Xue H. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J Mater Chem A. 2020;8(5):2463.

    Article  CAS  Google Scholar 

  43. Kshetri T, Tran D, Nguyen D, Kim N, Lau K, Lee J. Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor. Chem Eng J. 2020;380: 122543.

    Article  CAS  Google Scholar 

  44. Sridhar V, Park H. Carbon nanofiber linked FeS2 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries and supercapacitors. J Alloy Compd. 2018;732:799.

    Article  CAS  Google Scholar 

  45. Abouali S, Garakani M, Zhang B, Xu Z, Heidari EK, Huang JQ, Huang J, Kim JK. Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interface. 2015;7(24):13503.

    Article  CAS  Google Scholar 

  46. Shafei M, Deen A, Abd Moneim A, Hessein A. Controlled-synthesis of hierarchical NiCo2O4 anchored on carbon nanofibers mat for free-standing and highly-performance supercapacitors. J Mater Sci Mater Electron. 2021;32(12):15882.

    Article  Google Scholar 

  47. Zhang N, Wang W, Teng C, Wu Z, Ye Z, Zhi M, Hong Z. Co9S8 nanoparticle-decorated carbon nanofibers as high-performance supercapacitor electrodes. RSC Adv. 2018;8(48):27574.

    Article  CAS  Google Scholar 

  48. Zhao Y, Wang S, Yuan M, Chen Y, Huang Y, Lian J, Yang S, Li H, Wu L. Amorphous MoSx nanoparticles grown on cobalt-iron-based needle-like array for high-performance flexible asymmetric supercapacitor. Chem Eng J. 2021;417: 127927.

    Article  CAS  Google Scholar 

  49. Zhou Y, Song Y, Zhang S, Deng C. “Fiber-in-tube” hierarchical nanofibers based on defect-rich bimetallic oxide@C bubbles: a high-efficiency and superior performance cathode for hybrid Zn batteries. J Mater Chem A. 2020;8(28):13996.

    Article  CAS  Google Scholar 

  50. Zhu B, Tang S, Vongehr S, Xie H, Zhu J, Meng X. FeCo2O4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chem Commun. 2016;52(12):2624.

    Article  CAS  Google Scholar 

  51. Zhu F, Liu Y, Yan M, Shi W. Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor. J Colloid Interface Sci. 2018;512:419.

    Article  CAS  Google Scholar 

  52. Hou M, Xu M, Hu Y, Li B. Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim Acta. 2019;313:245.

    Article  CAS  Google Scholar 

  53. Sun X, Xu T, Bai J, Li C. MnO2 nanosheets grown on multichannel carbon nanofibers containing amorphous cobalt oxide as a flexible electrode for supercapacitors. ACS Appl Energy Mater. 2019;2(12):8675.

    Article  CAS  Google Scholar 

  54. Zhao S, Wu H, Li Y, Li Q, Zhou J, Yu X, Chen H, Tao K, Han L. Core-shell assembly of carbon nanofibers and a 2D conductive metal-organic framework as a flexible free-standing membrane for high-performance supercapacitors. Inorg Chem Front. 2019;6(7):1824.

    Article  CAS  Google Scholar 

  55. Kurtan U, Aydın H, Büyük B, Şahintürk U, Almessiere M, Baykal A. Freestanding electrospun carbon nanofibers uniformly decorated with bimetallic alloy nanoparticles as supercapacitor electrode. J Energy Storage. 2020;32: 101671.

    Article  Google Scholar 

  56. Ghanashyam G, Jeong H. Synthesis of nitrogen-doped plasma treated carbon nanofiber as an efficient electrode for symmetric supercapacitor. J Energy Storage. 2021;33: 102150.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was received from the Inner Mongolia Talent Fund, the National Natural Science Foundation of China (51603092), the China Postdoctoral Science Foundation (2019T120393), Natural Science Foundation of Jiangsu Province (BK20160537).

Author information

Authors and Affiliations

Authors

Contributions

WJL: did the experiments, analyzed the data, and wrote the initial manuscript. MY: did the experiments, analyzed the data, and wrote the experimental part. JBL, GCL, QPL and FQ: helped calibrate and analyze the data. YZ: wrote–reviewed, edited, and revised the manuscript.

Corresponding authors

Correspondence to Fen Qiao or Yan Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1712 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WJ., Yuan, M., Lian, JB. et al. Embedding partial sulfurization of iron–cobalt oxide nanoparticles into carbon nanofibers as an efficient electrode for the advanced asymmetric supercapacitor. Tungsten 5, 118–129 (2023). https://doi.org/10.1007/s42864-022-00157-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00157-2

Keywords

Navigation