Skip to main content
Log in

Assembly of selenoniobate–vanadoniobate double-anion heteropolyoxoniobate: synthesis, structure, and magnetic property

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Recently, continuous interests and persisting efforts on heteropolyniobate have been dedicated to its preparation and exploration. In this work, a novel Se-centred heteropolyniobate, [H2SeNb12(VO)4O40][Cu(en)2]2{[VNb12(VO)4O40][Cu(en)2]4}0.5·39H2O (en = ethanediamine), was synthesized. The compound was synthesized in aqueous solution by reacting the K7HNb6O19·13H2O with a mixture of vanadate (V) and selenite (IV) source, which consists of two polyanions, i.e., V-centred one and Se-centred another. The architecture was characterized by infrared spectra, thermogravimetric analysis, X-ray powder diffraction spectroscopy, ultraviolet–visible and X-ray photoelectron spectroscopy. Further, the magnetic property shows the antiferromagnetic interaction of the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng Q, Vila-Nadal L, Lang Z, Chen JJ, Long DL, Mathieson JS, Poblet JM, Cronin L. Self-sorting of heteroanions in the assembly of cross-shaped polyoxometalate clusters. J Am Chem Soc. 2018;140:2595.

    Article  CAS  Google Scholar 

  2. Xie S, Jiang J, Wang D, Tang Z, Mi R, Chen L, Zhao J. Tricarboxylic-ligand-decorated lanthanoid-inserted heteropolyoxometalates built by mixed-heteroatom-directing polyoxotungstate units: syntheses, structures, and electrochemical sensing for 17β-estradiol. Inorg Chem. 2021;60:7536.

    Article  CAS  Google Scholar 

  3. Derakhshanrad S, Mirzaei M, Streb C, Amiri A, Ritchie C. Polyoxometalate-based frameworks as adsorbents for drug of abuse extraction from hair samples. Inorg Chem. 2021;60:1472.

    Article  CAS  Google Scholar 

  4. Wang SS, Yang GY. Recent advances in polyoxometalate-catalyzed reactions. Chem Rev. 2015;115:4893.

    Article  CAS  Google Scholar 

  5. Yan J, Gao J, Long DL, Miras HN, Cronin L. Self-assembly of a nanosized, saddle-shaped, solution-stable polyoxometalate anion built from pentagonal building blocks: [H34W119Se8Fe2O420]54–. J Am Chem Soc. 2010;132:11410.

    Article  CAS  Google Scholar 

  6. Kamata K, Sugahara K. Base catalysis by mono- and polyoxometalates. Catalysts. 2017;7:345.

    Article  Google Scholar 

  7. Boussema F, Gross AJ, Hmida F, Ayed B, Majdoub H, Cosnier S, Maaref A, Holzinger M. Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosens Bioelectron. 2018;109:20.

    Article  CAS  Google Scholar 

  8. Zhao HY, Li YZ, Zhao JW, Wang L, Yang GY. State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials. Coord Chem Rev. 2021;443:213966.

    Article  CAS  Google Scholar 

  9. Nyman M, Bonhomme F, Alam TM, Rodriguez MA, Cherry BR, Krumhansl JL, Nenoff TM, Sattler AM. A general synthetic procedure for heteropolyniobates. Science. 2002;297:996.

    Article  CAS  Google Scholar 

  10. Son JH, Casey WH. Reversible capping/uncapping of phosphorouscentered Keggin-type polyoxoniobate clusters. Chem Commun. 2015;51:1436.

    Article  CAS  Google Scholar 

  11. Son JH, Ohlin CA, Johnson RL, Yu P, Casey WH. A soluble phosphorus-centered Keggin polyoxoniobate with bicapping vanadyl groups. Chem-Eur J. 2013;19:5191.

    Article  CAS  Google Scholar 

  12. Son JH, Park DH, Keszler DA, Casey WH. Acid-stable peroxoniobophosphate clusters to make patterned films. Chem-Eur J. 2015;21:6727.

    Article  CAS  Google Scholar 

  13. Zhao S, Liang Z, Geng Q, Ma P, Zhang C, Niu J, Wang J. Assembly of niobium-phosphate cluster and in situ transition-metal-containing derivatives. CrystEngComm. 2017;19:2768.

    Article  CAS  Google Scholar 

  14. Yang Z, Mu Q, Liang Z, Ma P, Niu J, Wang J. A novel peroxopolyoxoniobate incorporating mixed heteroatoms: [P2Se2Nb6(O2)6O22]8–. Dalton Trans. 2019;48:13135.

    Article  CAS  Google Scholar 

  15. Nyman M, Celestian AJ, Parise JB, Holland GP, Alam TM. Solid-state structural characterization of a rigid framework of lacunary heteropolyniobates. Inorg Chem. 2006;45:1043.

    Article  CAS  Google Scholar 

  16. Son JH, Casey WH. A new Keggin-like niobium-phosphate cluster that reacts reversibly with hydrogen peroxide. Chem Commun. 2015;51:12744.

    Article  CAS  Google Scholar 

  17. Shen JQ, Wu Q, Zhang Y, Zhang ZM, Li YG, Lu Y, Wang EB. Unprecedented high-nuclear transition-metal-cluster-substituted heteropolyoxoniobates: synthesis by V8 ring insertion into the POM matrix and antitumor activities. Chem Eur J. 2014;20:2840.

    Article  CAS  Google Scholar 

  18. Hu JF, Wang Y, Zhang XN, Chi YN, Yang S, Li JK, Hu CW. Controllable assembly of vanadium-containing polyoxoniobate-based three-dimensional organic-inorganic hybrid compounds and their photocatalytic properties. Inorg Chem. 2016;55:7501.

    Article  CAS  Google Scholar 

  19. Shen JQ, Zhang Y, Zhang ZM, Li YG, Gao YQ, Wang EB. Polyoxoniobate-based 3D framework materials with photocatalytic hydrogen evolution activity. Chem Commun. 2014;50:6017.

    Article  CAS  Google Scholar 

  20. Liang Z, Li T, Zhang L, Zheng L, Jia W, Mao Q. Synthesis and characterization of two hexacopper-capped Keggin-type polyoxoniobates. Inorg Chem Commun. 2020;116:107895.

    Article  CAS  Google Scholar 

  21. Geng Q, Liu Q, Ma P, Wang J, Niu J. Synthesis crystal structure and photocatalytic properties of an unprecedented arsenic-disubstituted Lindqvist-type peroxopolyoxoniobate ion: {As2Nb4(O2)4O14H1.5}4.5–. Dalton Trans. 2014;43:9843.

    Article  CAS  Google Scholar 

  22. Lan Q, Zhang ZM, Li YG, Wang EB. Extended structural materials composed of transition-metal-substituted arsenicniobates and their photocatalytic activity. RSC Adv. 2015;5:44198.

    Article  CAS  Google Scholar 

  23. Li N, Liu YW, Lu Y, He DF, Liu SM, Wang XQ, Li YG, Liu SX. An arsenicniobate-based 3D framework with selective adsorption and anion-exchange properties. New J Chem. 2016;40:2220.

    Article  CAS  Google Scholar 

  24. Yang Z, Shang J, He Y, Qiao Y, Ma P, Niu J, Wang J. A 1D Helical chain heterpolyniobate templated by AsO33–. Inorg Chem. 2020;59:1967.

    Article  CAS  Google Scholar 

  25. Bonhomme F, Larentzos JP, Alam TM, Maginn EJ, Nyman M. Synthesis structural characterization and molecular modeling of dodecaniobate Keggin chain materials. Inorg Chem. 2005;44:1774.

    Article  CAS  Google Scholar 

  26. Anderson TM, Thoma SG, Bonhomme F, Rodriguez MA, Park H, Parise JB, Alam TM, Larentzos JP, Nyman M. Lithium polyniobates. A Lindqvist-supported lithium-water adamantane cluster and conversion of hexaniobate to a discrete Keggin complex. Cryst Growth Des. 2007;7:719.

    Article  CAS  Google Scholar 

  27. Zhang TT, Lin PH, Yu GY, Zhang X, Cui XB. Syntheses characterization and properties of two new dodeca-niobates presenting unprecedented features. Dalton Trans. 2020;49:6495.

    Article  CAS  Google Scholar 

  28. Hou Y, Zakharov LN, Nyman M. Observing assembly of complex inorganic materials from polyoxometalate building blocks. J Am Chem Soc. 2013;135:16651.

    Article  CAS  Google Scholar 

  29. Zhang ZY, Lin QP, Kurunthu D, Wu T, Zuo F, Zheng ST, Bardeen CJ, Bu XH, Feng PY. Synthesis and photocatalytic properties of a new heteropolyoxoniobate compound: K10[Nb2O2(H2O)2][SiNb12O40]·12H2O. J Am Chem Soc. 2011;133:6934.

    Article  CAS  Google Scholar 

  30. Hou Y, Nyman M, Rodriguez MA. Soluble heteropolyniobates from the bottom of group IA. Angew Chem Int Ed. 2011;50:12514.

    Article  CAS  Google Scholar 

  31. Lin YY, Zhang J, Zhu ZK, Sun YQ, Li XX, Zheng ST. An ultrastable {SiNb18O54}-based hybrid polyoxoniobate framework for selective removal of crystal violet from aqueous solution and proton-conduction. Inorg Chem Commun. 2020;113:107766.

    Article  CAS  Google Scholar 

  32. Huang P, Qin C, Wang XL, Sun CY, Xing Y, Wang HN, Shao KZ, Su ZM. A new organic–inorganic hybrid based on the crescent-shaped polyoxoanion [H6SiNb18O54]8– and copper–organic cations. Dalton Trans. 2012;41:6075.

    Article  CAS  Google Scholar 

  33. Zhang Y, Shen JQ, Zheng LH, Zhang ZM, Li YX, Wang EB. Four polyoxonibate-based inorganic-organic hybrids assembly from bicapped heteropolyoxonibate with effective antitumor activity. Cryst Growth Des. 2014;14:110.

    Article  CAS  Google Scholar 

  34. Zhang X, Liu SX, Li SJ, Gao YH, Wang XN, Tang Q, Liu YW. Two members of the {X4Nb16O56} family (X = Ge Si) based on [(GeOH)2Ge2Nb16H2O54]12– and [K(GeOH)2Ge2Nb16H3O54]10–. Eur J Inorg Chem. 2013;2013:1706.

    Article  CAS  Google Scholar 

  35. Shen JQ, Yao S, Zhang ZM, Wu HH, Zhang TZ, Wang EB. Self-assembly and photocatalytic property of germanoniobate [H6Ge4Nb16O56]10–: encapsulating four GeO4 tetrahedra within a Nb16 cage. Dalton Trans. 2013;42:5812.

    Article  CAS  Google Scholar 

  36. Liu BX, Cai ZW, Yang T, Li XX, Yang GY, Zheng ST. A rare polyoxometalate based on mixed niobium-based polyoxoanions [GeNb18O54]14– and [Nb3W3O19]5–. Inorg Chem Commun. 2017;78:56.

    Article  CAS  Google Scholar 

  37. Zhang ZY, Peng J, Shi ZY, Zhou WL, Khan SU, Liu HS. Antimony-dependent expansion for the Keggin heteropolyniobate family. Chem Commun. 2015;51:3091.

    Article  CAS  Google Scholar 

  38. Hou Y, Alam TM, Rodriguez MA, Nyman M. Aqueous compatibility of group IIIA monomers and Nb-polyoxoanions. Chem Commun. 2012;48:6004.

    Article  CAS  Google Scholar 

  39. Guo GL, Xu YQ, Cao J, Hu CW. An unprecedented vanadoniobate cluster with ‘trans-vanadium’ bicapped Keggin-type {VNb12O40(VO)2}. Chem Commun. 2011;47:9411.

    Article  CAS  Google Scholar 

  40. Guo GL, Xu YQ, Cao J, Hu CW. The V4Nb6O30 cluster: a new type of vanadoniobate anion structure. Chem-Eur J. 2012;18:3493.

    Article  CAS  Google Scholar 

  41. Huang P, Qin C, Wang XL, Sun CY, Yang GS, Shao KZ, Jiao YQ, Zhou K, Su ZM. An unprecedented organic–inorganic hybrid based on the first {Nb10V4O40(OH)2}12– clusters and copper cations. Chem Commun. 2012;48:103.

    Article  CAS  Google Scholar 

  42. Li SJ, Ji PP, Han SN, Hao ZM, Chen XN. Two polyoxoniobates-based ionic crystals as Lewis base catalysts for cyanosilylation. Inorg Chem Commun. 2020;111:107666.

    Article  CAS  Google Scholar 

  43. Liang Z, He Y, Qiao Y, Ma P, Niu J, Wang J. Sandwich-type heteropolyniobate templated by mixed heteroanions. Inorg Chem. 2020;59:7895.

    Article  CAS  Google Scholar 

  44. Liang Z, Zhang L, Li Y, Ma P, Niu J, Wang J. Two novel heteropolyniobates using TeO32– as template and linker. Inorg Chem. 2019;58:27.

    Article  CAS  Google Scholar 

  45. Liang Z, Sun J, Zhang D, Ma P, Zhang C, Niu J, Wang J. Assembly of TeO32– ions embedded in an Nb/O cage with selective decolorization of organic dye. Inorg Chem. 2017;56:10119.

    Article  CAS  Google Scholar 

  46. Zheng Q, Vila-Nadal L, Lang Z, Chen JJ, Long DL, Mathieson JS, Poblet JM. Self-sorting of heteroanions in the assembly of cross-shaped polyoxometalate clusters. J Am Chem Soc. 2018;140:2595.

    Article  CAS  Google Scholar 

  47. Filowitz M, Ho RKC, Klemperer WG, Shum W. Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution. Inorg Chem. 1979;18:93.

    Article  CAS  Google Scholar 

  48. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Cryst. 2015;C71:3.

    Google Scholar 

  49. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution refinement and analysis program. J Appl Crystallogr. 2009;42:339.

    Article  CAS  Google Scholar 

  50. Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr Sect B Struct Sci. 1985;41:244.

    Article  Google Scholar 

  51. Trzesowska A, Kruszynski R, Bartczak TJ. Bond-valence parameters of lanthanides. Acta Crystallogr Sect B Struct Sci. 2006;B62:745.

    Article  CAS  Google Scholar 

  52. Han Q, Li Z, Liang X, Ding Y, Zheng ST. Synthesis of a 6-nm-long transition-metal–rare-earth-containing polyoxometalate. Inorg Chem. 2019;58:12534.

    Article  CAS  Google Scholar 

  53. Moser TP, Schrader GL. Stability of model V-P-O catalysts for maleic anhydride synthesis. J Catal. 1987;104:99.

    Article  CAS  Google Scholar 

  54. Lindblad T, Rebenstorf B, Yan ZG, Andersson SLT. Characterization of vanadia supported on amorphous AlPO4 and its properties for oxidative dehydrogenation of propane. Appl Catal A. 1994;112:187.

    Article  CAS  Google Scholar 

  55. Aregay GG, Ali J, Chen Z. Enhanced simultaneous removal of toxic (SeO4)2− and metals Cr3+ and Cu2+ using polysulfide intercalated layered double hydroxide. Sep Purif Technol. 2021;279:119649.

    Article  CAS  Google Scholar 

  56. Yang Z, Shang J, Yang Y, Ma P, Niu J, Wang J. Synthesis structures and stability of three V-substituted polyoxoniobate clusters based on [TeNb9O33]17– units. Dalton Trans. 2021;50:7610.

    Article  CAS  Google Scholar 

  57. Han LZ, Jiao CQ, Chen WC, Shao KZ, Jin LY, Su ZM. Assembly of tetra-nuclear YbIII-containing selenotungstate clusters: synthesis structures and magnetic properties. Dalton Trans. 2021;50:11535.

    Article  CAS  Google Scholar 

  58. Liu L, Jiang J, Liu X, Liu G, Wang D, Chen L, Zhao J. First series of mixed (PIII SeIV)-heteroatomoriented rare-earth-embedded polyoxotungstates containing distinct building blocks. Inorg Chem Front. 2020;7:4640.

    Article  CAS  Google Scholar 

  59. Ru J, Ma X, Cui Y, Guo M, Chen J, Li XX. Two vanadogermanates from 1 dimensional chain to 2 dimensional network built from Di-Cd-substituted Ge-V-O clusters and transition metal complex bridges. Cryst Growth Des. 2017;17:1384.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071045, 21671056), the Program for Science and Technology Innovation Talents in Universities of Henan Province (19HASTIT044), Excellent Youth Science Fund Project of Henan Province (202300410042). Dongdi Zhang thanks for the Start-Up Fund of Henan University. Z. Liang is thankful to the Horizontal Cooperation Project of Nantong University (20ZH104), Science and Technology Program of Nantong (JC2020126), Project on the Cooperation of Industry, Education and Research of Jiangsu Province (BY2020556).

Author information

Authors and Affiliations

Authors

Contributions

Z-JL, NL and D-DZ wrote the draft; H-BC and W-XD collected the data; GW and D-DZ contributed to conceived the idea of the study. All authors contributed to the writing and revisions.

Corresponding authors

Correspondence to Guan Wang or Dong-Di Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 441 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, ZJ., Li, N., Cheng, HB. et al. Assembly of selenoniobate–vanadoniobate double-anion heteropolyoxoniobate: synthesis, structure, and magnetic property. Tungsten 5, 75–80 (2023). https://doi.org/10.1007/s42864-022-00146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00146-5

Keywords

Navigation