Skip to main content
Log in

Incorporation of polyoxometalate-based acid–base pair into a sulfonated MIL-101 for achieving proton-conduction materials with high proton conductivity and high stability

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Currently, it is of great significance to develop new proton-conduction materials with high proton conductivity, high stability, and good conducting durability to meet the demands of fuel cell and sensors. Herein, we prepared two composites DETA-HPW@MIL-101-SO3H 1 and TETA-HPW@MIL-101-SO3H 2 (DETA = diethylenetriamine, HPW = H3PW12O40·xH2O, MIL = Material Institut Lavoisier, TETA = triethylenetetramine) by encapsulating polyoxometalate (POM) and organic amine into a sulfonated MIL-101 through a step-by-step dipping method. Delightedly, 1 and 2 have high proton conductivities of 6.4 × 10−2 and 2.9 × 10−2 S·cm−1 at 65 °C and 95% relative humidity (RH), respectively, which can be attributed to the fast proton transfer among acid–base pairs formed between HPW and organic amine as well between sulfonic acid and organic amine. Moreover, the time-dependent test in proton conductivity displays that their proton-conduction properties have good stability and durability, which benefit from that the electrostatic interactions among acid–base pairs and the limitation of opening size of MIL-101-SO3H make HPW and organic amine stably exist in the cages of MIL-101-SO3H. The remarkable proton-conduction properties (high proton conductivity and high stability) of the two composites make them become promising proton-conduction materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ye YX, Guo WG, Wang LH, Li ZY, Song ZJ, Chen J, Zhang ZJ, Xiang SC, Chen BL. Straightforward loading of imidazole molecules into metal-organic framework for high proton conduction. J Am Chem Soc. 2017;139(44):15604.

    Article  CAS  Google Scholar 

  2. Gui DX, Dai X, Tao Z, Zheng T, Wang XX, Silver M, Shu J, Chen LH, Wang YL, Zhang TT, Xie J, Zou L, Xia YH, Zhang JJ, Zhang J, Zhao L, Juan DW, Zhou RH, Chai ZF, Wang S. Unique proton transportation pathway in a robust inorganic coordination polymer leading to intrinsically high and sustainable anhydrous proton conductivity. J Am Chem Soc. 2018;140(19):6146.

    Article  CAS  Google Scholar 

  3. Mauritz K, Moore R. State of understanding of nafion. Chem Rev. 2004;104:4535.

    Article  CAS  Google Scholar 

  4. Wang Y, Chen K, Mishler J, Cho S, Adroher X. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy. 2011;88(4):981.

    Article  CAS  Google Scholar 

  5. Liu WJ, Dong LZ, Li RH, Chen YJ, Sun SN, Li SL, Lan YQ. Different protonic species affecting proton conductivity in hollow spherelike polyoxometalates. ACS Appl Mater Interfaces. 2019;11(7):7030.

    Article  CAS  Google Scholar 

  6. Si C, Ma PT, Han QX, Jiao JC, Du W, Wu JP, Li MX, Niu JY. A polyoxometalate-based inorganic porous material with both proton and electron conductivity by light actuation: photocatalysis for baeyer-villiger oxidation and Cr(VI) reduction. Inorg Chem. 2021;60(2):682.

    Article  CAS  Google Scholar 

  7. Ma PT, Wan R, Wang YY, Hu F, Zhang DD, Niu JY, Wang JP. Coordination-driven self-assembly of a 2D graphite-like framework constructed from high-nuclear Ce10 cluster encapsulated polyoxotungstates. Inorg Chem. 2016;55(2):918.

    Article  CAS  Google Scholar 

  8. Dolbecq A, Dumas E, Mayer C, Mialane P. Hybrid organic−inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev. 2010;110:6009.

    Article  CAS  Google Scholar 

  9. Nakamura O, Kodama T, Ogino I, Miyake Y. High-conductivity solid proton conductors: dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals. Chem Lett. 1979;8:17.

    Article  Google Scholar 

  10. Du DY, Qin JS, Li SL, Su ZM, Lan YQ. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem Soc Rev. 2014;43(13):4615.

    Article  CAS  Google Scholar 

  11. Liu YW, Yang X, Miao J, Tang Q, Liu SM, Shi Z, Liu SX. Polyoxometalate-functionalized metal-organic frameworks with improved water retention and uniform proton-conducting pathways in three orthogonal directions. Chem Commun. 2014;50(70):10023.

    Article  CAS  Google Scholar 

  12. Dey C, Kundu T, Banerjee R. Reversible phase transformation in proton conducting Strandberg-type POM based metal organic material. Chem Commun. 2012;48(2):266.

    Article  CAS  Google Scholar 

  13. Qi W, Wu LX. Polyoxometalate/polymer hybrid materials: fabrication and properties. Polym Int. 2009;58(11):1217.

    Article  CAS  Google Scholar 

  14. Song YF, Tsunashima R. Recent advances on polyoxometalate-based molecular and composite materials. Chem Soc Rev. 2012;41(22):7384.

    Article  CAS  Google Scholar 

  15. Wu HR, Li LW, Tsuboi M, Cheng YQ, Wang WY, Mamontov E, Uchida S, Wang Z, Yin PC. Spatial-temporal characteristics of confined polymer motion determine proton conduction of polyoxometalate-poly (ethylene glycol) hybrid nanocomposites. J Phys Chem Lett. 2018;9(19):5772.

    Article  CAS  Google Scholar 

  16. Sun XW, Liu SM, Zhang S, Dang TY, Tian HR, Lu Y, Liu SX. High proton conductivity achieved by the self-assembly of pom-based acid–base adduct in sba-15 over a wide range from −40 to 85 oC. ACS Appl Energy Mater. 2020;3(1):1242.

    Article  CAS  Google Scholar 

  17. Ma HP, Liu BL, Li B, Zhang LM, Li YG, Tan HQ, Zang HY, Zhu GS. Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J Am Chem Soc. 2016;138(18):5897.

    Article  CAS  Google Scholar 

  18. Cao XL, Xie SL, Li SL, Dong LZ, Liu J, Liu XX, Wang WB, Su ZM, Guan W, Lan YQ. A well-established pom-based single-crystal proton-conducting model incorporating multiple weak interactions. Chem Eur J. 2018;24:2365.

    Article  CAS  Google Scholar 

  19. Kim A, Park C, Vinothkannan M, Yoo D. Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells. Compos B Eng. 2018;155:272.

    Article  CAS  Google Scholar 

  20. Zhang S, Lu Y, Sun XW, Li Z, Dang TY, Zhang Z, Tian HR, Liu SX. Purely inorganic frameworks based on polyoxometalate clusters with abundant phosphate groups: single-crystal to single-crystal structural transformation and remarkable proton conduction. Chem Commun. 2020;56(3):391.

    Article  CAS  Google Scholar 

  21. Wu L, Yang YS, Ye YX, Yu ZJ, Song ZJ, Chen SM, Chen LJ, Zhang ZJ, Xiang SC. Loading acid–base pairs into periodic mesoporous organosilica for high anhydrous proton conductivity over a wide operating temperature window. ACS Appl Energy Mater. 2018;1(9):5068.

    Article  CAS  Google Scholar 

  22. Vinothkannan M, Hariprasad R, Ramakrishnan S, Kim A, Yoo D. Potential bifunctional filler (CeO2–ACNTs) for nafion matrix toward extended electrochemical power density and durability in proton-exchange membrane fuel cells operating at reduced relative humidity. ACS Sustain Chem Eng. 2019;7(15):12847.

    Article  CAS  Google Scholar 

  23. Kim A, Vinothkannan M, Song M, Lee J, Lee H, Yoo D. Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly(ether ether ketone) membrane: effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity. Compos Part B Eng. 2020;188:107890.

    Article  CAS  Google Scholar 

  24. Ferey G, Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate–based solid with unusually large pore volumes and surface area. Science. 2005;309:2040.

    Article  CAS  Google Scholar 

  25. Akiyama G, Matsuda R, Sato H, Takata M, Kitagawa S. Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv Mater. 2011;23(29):3294.

    Article  CAS  Google Scholar 

  26. Zhang FM, Dong LZ, Qin JS, Guan W, Liu J, Li SL, Lu M, Lan YQ, Su ZM, Zhou HC. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks. J Am Chem Soc. 2017;139(17):6183.

    Article  CAS  Google Scholar 

  27. Lai XY, Liu YW, Yang GC, Liu SM, Shi Z, Lu Y, Luo F, Liu SX. Controllable proton-conducting pathways via situating polyoxometalates in targeting pores of a metal–organic framework. J Mater Chem A. 2017;5(20):9611.

    Article  CAS  Google Scholar 

  28. Hwang Y, Hong DY, Chang JS, Jhung S, Seo Y, Kim J, Vimont A, Daturi M, Serre C, Ferey G. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed. 2008;47(22):4144.

    Article  CAS  Google Scholar 

  29. Sun JM, Abednatanzi S, Chen H, Liu YY, Leus K, Van P. Bifunctional noble-metal-free catalyst for the selective aerobic oxidation-knoevenagel one-pot reaction: encapsulation of polyoxometalates into an alkylamine-modified MIL-101 framework. ACS Appl Mater Interfaces. 2021;13(20):23558.

    Article  CAS  Google Scholar 

  30. Li XM, Liu J, Zhao C, Zhou JL, Zhao L, Li SL, Lan YQ. Strategic hierarchical improvement of superprotonic conductivity in a stable metal–organic framework system. J Mater Chem A. 2019;7(43):25165.

    Article  CAS  Google Scholar 

  31. Wang SJ, Wahiduzzaman M, Davis L, Tissot A, Shepard W, Marrot J, Corcos C, Hamdane D, Maurin G, Vinot S, Serre C. A robust zirconium amino acid metal-organic framework for proton conduction. Nat Commun. 2018;9(1):4937.

    Article  Google Scholar 

  32. Lin LD, Li Z, Zhao D, Liu JH, Li XX, Zheng ST. Development of a new Lindqvist-like Fe6 cluster secondary building unit for MOFs. Chem Commun. 2019;55(72):10729.

    Article  CAS  Google Scholar 

  33. Zhai QG, Mao CY, Zhao X, Lin QP, Bu F, Chen XT, Bu XH, Feng PY. Cooperative crystallization of heterometallic indium-chromium metal-organic polyhedra and their fast proton conductivity. Angew Chem Int Ed. 2015;54(27):7886.

    Article  CAS  Google Scholar 

  34. Hwang S, Lee E, Song D, Jeong N. High proton mobility with high directionality in isolated channels of MOF-74. ACS Appl Mater Interfaces. 2018;10(41):35354.

    Article  CAS  Google Scholar 

  35. Li R, Wang SH, Chen XX, Lu J, Fu ZH, Li Y, Xu G, Zheng FK, Guo GC. Highly anisotropic and water molecule-dependent proton conductivity in a 2D homochiral copper(ii) metal–organic framework. Chem Mater. 2017;29(5):2321.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 22071019 and 21872021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4020 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WY., Lu, Y., Li, Z. et al. Incorporation of polyoxometalate-based acid–base pair into a sulfonated MIL-101 for achieving proton-conduction materials with high proton conductivity and high stability. Tungsten 4, 130–137 (2022). https://doi.org/10.1007/s42864-021-00123-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00123-4

Keywords

Navigation