Skip to main content
Log in

Compatibility investigation of liquid tin and tungsten-based capillary porous system under high-density plasma environment

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

The bias voltage-enhanced plasma was utilized to investigate the compatibility of liquid tin and CPS (capillary porous system) in Sichuan University Plasma Surface Interaction (SCU-PSI). Prewetted (through static heating method) and unwetted (without preheating) Sn-CPS were prepared and then irradiated by different bias voltage-driven plasma. In comparison to bare CPS exposed to plasma, the Sn wetted CPS showed slightly internal and external morphology variation after plasma irradiation with + 20 V and − 20 V bias voltage. However, for unwetted Sn-CPS samples, the CPS revealed varying degrees of damage along with a range of bias voltage (0 V to  − 16 V), which has not been observed before. It is interesting that there is no obvious surface structure change or damage for bare CPS after the irradiation of plasma and corrosion of liquid tin from other report. The inside mechanism still needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Ivanova-Stanik I, Zagorski R. Influence of the divertor plate material on the plasma performance in DEMO. Nucl Fusion. 2015;5(7):073034.

    Article  Google Scholar 

  2. Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N, ASDEX Upgrade Team. Materials for the plasma-facing components of fusion reactors. J Nucl Mater. 2004;329:66.

    Article  Google Scholar 

  3. Budaev VP. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review). Phys Atom Nucl. 2016;79(7):1137.

    Article  CAS  Google Scholar 

  4. Zhao M, Jacob W, Manhard A, Gao L, Balden M, Von TU, Zhou Z. Deuterium implantation into Y2O3-doped and pure tungsten: deuterium retention and blistering behavior. J Nucl Mater. 2017;487:75.

    Article  CAS  Google Scholar 

  5. Xu Q, Ding XY, Luo LM, Miyamoto M, Tokitani M, Zhang J, Wu YC. D2 retention and microstructural evolution during He irradiation in candidate plasma facing material W-La2O3 alloy. J Nucl Mater. 2017;496:227.

    Article  CAS  Google Scholar 

  6. Lang ST, Yan QZ, Sun NB, Zhang XX, Ge CC. Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical method. Fusion Eng Des. 2017;121:366.

    Article  CAS  Google Scholar 

  7. Nogami S, Guan WH, Fukuda M, Hasegawa A. Effect of microstructural anisotropy on the mechanical properties of K-doped tungsten rods for plasma facing components. Fusion Eng Des. 2016;109:1549.

    Article  Google Scholar 

  8. Qi YF, Wang B, Zhou JY, Li YG, Tian W, Wang L. Research progress in damage of tungsten and tungsten-base materials for nuclear fusion device. Rare Metal Mat Eng. 2018;47(7):2262.

    Google Scholar 

  9. Antonov NV, Belan VG, Evtihin VA, Golubchikov LG, Khripunov VI, Korjavin VM, Lyublinski IE, Maynashev VS, Petrov VB, Pistunovich VI, Pozharov VA, Podkovirnov VI, Shapkin VV, Vertkov AV. Experimental and calculated basis of the lithium capillary system as divertor material. J Nucl Mater. 1997;1:1190.

    Article  Google Scholar 

  10. Martin-Rojo AB, Oyarzabal E, Morgan TW, Tabares FL. Exposure of liquid lithium confined in a capillary structure to high plasma fluxes in PILOT-PSI-influence of temperature on D retention. Fusion Eng Des. 2017;117:222.

    Article  CAS  Google Scholar 

  11. Morgan TW, Vertkov A, Bystrov K, Lyublinski IE, Genuit JW, Mazzitelli G. Power handling of a liquid-metal based CPS structure under high steady-state heat and particle fluxes. Nucl Mater Energy. 2017;12:210.

    Article  Google Scholar 

  12. Kvon V, Al R, Bystrov K, Peeters FJJ, Van De Sanden MCM, Morgan TW. Tin re-deposition and erosion measured by cavity-ring-down-spectroscopy under a high flux plasma beam. Nucl Fusion. 2017;57(8):086040.

    Article  Google Scholar 

  13. Ou W, Al RS, Vernimmen JWM, Brons S, Rindt P, Morgan TW. Deuterium retention in Sn-filled samples exposed to fusion-relevant flux plasmas. Nucl Fusion. 2020;60(2):026008.

    Article  CAS  Google Scholar 

  14. Morgan TW, Rindt P, Van Eden GG, Kvon V, Jaworksi MA, Lopes Cardozo NJ. Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices. Plasma Phys Control Fusion. 2017;60(1):014025.

    Article  Google Scholar 

  15. Lyublinski IE, Vertkov AV, Semenov VV. Comparative analysis of the possibility of applying low-melting metals with the capillary-porous system in tokamak conditions. Phys Atom Nucl. 2016;79(7):1163.

    Article  CAS  Google Scholar 

  16. Coenen JW, De Temmerman G, Federici G, Philipps V, Sergienko G, Strohmayer G, Terra A, Unterberg B, Wegener T, Van den Bekerom DCM. Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective. Phys Scr. 2014;2014(T159):014037.

    Article  Google Scholar 

  17. Vertkov AV, Lyublinski IE, Zharkov MY, Mazzitelli G, Apicella ML, Iafrati M. Liquid tin limiter for FTU tokamak. Fusion Eng Des. 2017;117:130.

    Article  CAS  Google Scholar 

  18. He PN, Zhang ZY, Xia WX, Shu L, Ma XC, Gou FJ, Zhang K. Compatibility between high-flux helium plasma irradiated molybdenum and liquid lithium. J Nucl Mater. 2018;509:736.

    Article  CAS  Google Scholar 

  19. Cao X, Zhang DH, Zhao YJ, Xiao KG, Wei JJ, Chen SL, Ma XC, Gou FJ. Formulized average surface binding energy elevation and lithium vaporization and redeposition investigations in capillary pore systems. Nucl Fusion. 2019;59(5):056015.

    Article  CAS  Google Scholar 

  20. Ye ZB, Ma XC, He PN, Wang ZJ, Liu QC, Yan Q, Wei JJ, Zhang K, Gou FJ. The investigation of plasma-induced wettability of liquid tin-capillary porous system. Nucl Mater Energy. 2019;20:100694.

    Article  Google Scholar 

  21. Wang HX, Zhou Y, Gou FJ, Li Y, Wang HB, Zheng XJ, Li YG. Plasma density measurement on an SCU-PSI device via a CO2 dispersion interferometer. Plasma Fusion Res. 2018;13:3402049.

    Article  Google Scholar 

  22. Ma XC, Cao XG, Han L, Zhang ZY, Wei JJ, Gou FJ. Characterization of high flux magnetized helium plasma in SCU-PSI linear device. Plasma Sci Technol. 2018;20:025104.

    Article  Google Scholar 

  23. Fisher AE, Hvasta MG, Kolemen E. Study of liquid metal surface wave damping in the presence of magnetic fields and electrical currents. Nucl Mater Energ. 2019;19:101.

    Article  Google Scholar 

  24. Pistunovich VI, Vertkov AV, Evtikhin VA, Korjavin VM, Lyublinski IE, Petrov VB, Khripunov BI, Shapkin VV. Research of the capillary structure heat removal efficiency under divertor conditions. J Nucl Mater. 1996;233:650.

    Article  Google Scholar 

  25. Lyublinski IE, Vertkov AV, Zharkov MY, Sevryukov ON, Dzhumaev PS, Shumskiy VA, Ivannikov AA. Selection of materials for tokamak plasma facing elements based on a liquid tin capillary pore system. J Phys Conf Ser. 2016;748(1):012014.

    Article  Google Scholar 

  26. Zhao P, Riesch J, Hoschen T, Almanstotter J, Balden M, Coenen JW, Himml R, Pantleon W, Toussaint UV, Neu R. Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments. Int J Refract Met Hard Mater. 2017;68:29.

    Article  CAS  Google Scholar 

  27. Yajima M, Yamagiwa M, Kajita S, Ohno N, Tokitani M, Takayama A, Saito S, Ito AM, Nakamura H, Yoshida N. Comparison of damages on tungsten surface exposed to noble gas plasmas. Plasma Sci Technol. 2013;15(3):282.

    Article  CAS  Google Scholar 

  28. Lyublinski IE, Vertkov AV. Comparative assessment of application of low melting metals with capillary pore systems in a tokamak. Fusion Eng Des. 2014;89(12):2953.

    Article  CAS  Google Scholar 

  29. Zheng XJ, Gou FJ, Zhou Y, Wang HX, Wallace AC, Wang HB, Huang ZH, Ji XQ, Liang SY, Liu W, Feng YT, Deng BQ. A pulsed high-current plasma beam under external and self-induced magnetic confinement in a linear device. Plasma Phys Control Fusion. 2019;61:105003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019SCU12072), the China Postdoctoral Science Foundation (Grant No. 2019M663487), the National Natural Science Foundation of China (Grant No. 11875198 and 11905151) and the Major Research Plan of National Natural Science Foundation of China (Grant No. 91426303). Kun Zhang is grateful to the Fundamental Research Funds for the Central Universities for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Zhang or Fu-Jun Gou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, ZB., Ma, XC., He, PN. et al. Compatibility investigation of liquid tin and tungsten-based capillary porous system under high-density plasma environment. Tungsten 2, 94–100 (2020). https://doi.org/10.1007/s42864-020-00044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-020-00044-8

Keywords

Navigation