Skip to main content

Advertisement

Log in

Characteristics and Production Technologies of Byzantine Building Bricks from the Anaia Church in Western Anatolia

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

Fired bricks were valued as essential building materials in the central tradition of Byzantine architecture in Constantinople (İstanbul), Anatolia, and the Balkans. In this study, Byzantine bricks from three construction periods, covering nearly nine centuries (fifth–fourteenth centuries), of Anaia Church (Kadıkalesi) in Western Anatolia were investigated to determine their characteristics, raw material properties, and production technologies. The characteristics of the bricks were evaluated and compared in order to identify similarities and differences between the periods and to investigate the continuity of the tradition of brick production over centuries. Basic physical and colorimetric properties, chemical and mineralogical compositions, thermal behavior, and microstructural and mechanical properties of bricks were determined by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (SEM–EDS), Fourier-transform infrared spectrometry (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and mechanical tests. The results indicated that all the bricks in the Anaia Church were brown-beige colored, highly porous, low-density materials with low mechanical strength. They were produced from Ca-rich clays, probably obtained from two different sources used during all construction periods. The mineralogical composition and thermal properties revealed that the bricks from the first and second periods were fired at between 800 and 900°C and the bricks from the third period were fired at < 850°C. Greater calcium content and firing temperatures were found to reduce the total porosity and the number of small pores (< 10 μm) and increase the mechanical strength of the bricks. The results of the study revealed no significant differences in the production of bricks, including raw material sources and kiln conditions, for the different construction periods of the church.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sets from the study are available upon request from the corresponding author.

References

  • Adam, J.-P. (2005). Roman Building: Materials and Techniques. Routledge.

  • Aslan Özkaya, Ö., & Böke, H. (2009). Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon. Materials Characterization, 60(9), 995–1000. https://doi.org/10.1016/j.matchar.2009.04.003

    Article  Google Scholar 

  • ASTM C67–07. (2007). Standard test methods for sampling and testing brick and structural clay tile. ASTM International, PA, USA.

  • Bakırer, Ö. (1981). Selçuklu Öncesi ve Selçuklu Dönemi Anadolu Mimarisinde Tuğla Kullanımı. Middle East Technical University.

  • Ballato, P., Cruciani, G., Dalconi, M. C., Fabbri, B., & Macchiarola, M. (2005). Mineralogical study of historical bricks from the Great Palace of the Byzantine Emperors in Istanbul based on powder X-ray diffraction data. European Journal of Mineralogy, 17(5), 777–784. https://doi.org/10.1127/0935-1221/2005/0017-0777

    Article  Google Scholar 

  • Bellanger, M., Homand, F., & Remy, J. M. (1993). Water behaviour in limestones as a function of pores structure: Application to frost resistance of some Lorraine limestones. Engineering Geology, 36, 99–108. https://doi.org/10.1016/0013-7952(93)90022-5

    Article  Google Scholar 

  • Benavente, D., Linares-Fernández, L., Cultrone, G., & Sebastián, E. (2006). Influence of microstructure on the resistance to salt crystallisation damage in brick. Materials and Structures/materiaux Et Constructions, 39(1), 105–113. https://doi.org/10.1617/s11527-005-9037-0

    Article  Google Scholar 

  • Bolognesi, E., Fabbri, B., Macchiarola, M., & Kotas, P. (2004). Characterisation of Historic Bricks from the Ruins of the Great Imperial Palace in Istanbul. Key Engineering Materials, 264–268(III), 2383–2386. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.264-268.2383

  • Buchner, T., Kiefer, T., Gaggl, W., Zelaya-Lainez, L., & Füssl, J. (2021). Automated Morphometrical Characterization of Material Phases of Fired Clay Bricks Based on Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and Powder X-ray Diffraction. Construction and Building Materials, 288, 122909. https://doi.org/10.1016/J.CONBUILDMAT.2021.122909

  • Calliari, I., Canal, E., Cavazzoni, S., & Lazzarini, L. (2001). Roman bricks from the Lagoon of Venice: A chemical characterization with methods of multivariate analysis. Journal of Cultural Heritage, 2, 23–29.

    Article  Google Scholar 

  • Cardiano, P., Ioppolo, S., De Stefano, C., Pettignano, A., Sergi, S., & Piraino, P. (2004). Study and characterization of the ancient bricks of monastery of “San Filippo di Fragalà” in Frazzanò (Sicily). Analytica Chimica Acta, 519(1), 103–111. https://doi.org/10.1016/j.aca.2004.05.042

    Article  Google Scholar 

  • Carretero, M. I., Dondi, M., Fabbri, B., & Raimondo, M. (2002). The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays. Applied Clay Science, 20(6), 301–306. https://doi.org/10.1016/S0169-1317(01)00076-X

    Article  Google Scholar 

  • Chukanov, N. V. (2014). Infrared spectra of mineral species. Springer.https://doi.org/10.1007/978-94-007-7128-4

  • Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., & De La Torre, M. J. (2001). Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13(3), 621–634. https://doi.org/10.1127/0935-1221/2001/0013-0621

    Article  Google Scholar 

  • Cultrone, G., Sebastián, E., Elert, K., de la Torre, M. J., Cazalla, O., & Rodriguez-Navarro, C. (2004). Influence of mineralogy and firing temperature on the porosity of bricks. Journal of the European Ceramic Society, 24(3), 547–564. https://doi.org/10.1016/S0955-2219(03)00249-8

    Article  Google Scholar 

  • Cultrone, G., Sidraba, I., & Sebastián, E. (2005). Mineralogical and physical characterization of the bricks used in the construction of the “Triangul Bastion”, Riga (Latvia). Applied Clay Science, 28, 297–308. https://doi.org/10.1016/j.clay.2004.02.005

    Article  Google Scholar 

  • Davey, N. (1961). A History of Building Materials. Phoenix House Publication.

  • De Benedetto, G. E., Laviano, R., Sabbatini, L., & Zambonin, P. G. (2002). Infrared spectroscopy in the mineralogical characterization of ancient pottery. Journal of Cultural Heritage, 3, 177–186.

    Article  Google Scholar 

  • Demir, S., Şerifaki, K., & Böke, H. (2018). Execution technique and pigment characteristics of Byzantine wall paintings of Anaia Church in Western Anatolia. Journal of Archaeological Science: Reports, 17, 39–46. https://doi.org/10.1016/J.JASREP.2017.09.037

    Article  Google Scholar 

  • Drebushchak, V. A., Mylnikova, L. N., Drebushchak, T. N., & Boldyrev, V. V. (2005). The investigation of ancient pottery: Application of thermal analysis. Journal of Thermal Analysis and Calorimetry, 82(3), 617–626. https://doi.org/10.1007/S10973-005-0942-9

    Article  Google Scholar 

  • El Ouahabi, M., Daoudi, L., Hatert, F., & Fagel, N. (2015). Modified Mineral Phases During Clay Ceramic Firing. Clays and Clay Minerals, 63, 404–413. https://doi.org/10.1346/CCMN.2015.0630506

    Article  Google Scholar 

  • Elert, K., Cultrone, G., Rodriguez-Navarro, C., & Sebastián Pardo, E. (2003). Durability of bricks used in the conservation of historic buildings - Influence of composition and microstructure. Journal of Cultural Heritage, 4(2), 91–99. https://doi.org/10.1016/S1296-2074(03)00020-7

    Article  Google Scholar 

  • Eroğlu, M., & Akyol, A. A. (2017). Antik Yapı Malzemesi Olarak Tuğla ve Kiremit: Boğsak Adası Bizans Yerleşimi Örneklemi. Sanat ve Tasarım Dergisi, 141–162. https://doi.org/10.18603/sanatvetasarim.370745

  • European Standards. (2015). BS EN 772–1:2011+A1:2015 Methods of test for masonry units Determination of compressive strength.

  • Fernandes, F. M., Lourenço, P. B., & Castro, F. (2010). Ancient Clay Bricks: Manufacture and Properties. Materials, Technologies and Practice in Historic Heritage Structures, 29–48. https://doi.org/10.1007/978-90-481-2684-2_3

  • Foss, C. (1979). Ephesus After Antiquity: A Late Antique. Cambridge University Press.

    Google Scholar 

  • Gadsden, J. A. (1975). Infrared Spectra of Minerals and Related Inorganic Compounds. Butterworths.

    Google Scholar 

  • Gerharz, R. R., Lantermann, R., & Spennemann, D. (1988). Munsell color charts: A necessity for archaeologists? Australian Historical Archaeology, 6, 88–95. https://www.jstor.org/stable/29543213

  • Gliozzo, E. (2020). Ceramic technology. How to reconstruct the firing process. Archaeological and Anthropological Sciences, 12(11), 260. https://doi.org/10.1007/s12520-020-01133-y

  • Hazinedar Coşkun, T. (2021). Kuşadası, Kadıkalesi Kazısı’nın 2017–2020 Sezonlarına Ait Bizans Cam Örnekleri. Sanat Tarihi Dergisi, 30(2), 1019–1037.

    Article  Google Scholar 

  • Helen, T. (1975). Organization of Roman brick production in the first and second centuries A.D.: an interpretation of Roman brick stamps. Suomalainen Tiedeakatemia.

  • Hlavay, J., Jonas, K., Elek, S., & Inczedy, J. (1978). Characterization of the Particle Size and the Crystallinity of Certain Minerals by IR Spectrophotometry and Other Instrumental Methods - 2. Investigations on Quartz and Feldspar. Clays and Clay Minerals, 26, 139–143. https://doi.org/10.1346/CCMN.1978.0260209

    Article  Google Scholar 

  • İspir, M. (2010). A Comprehensive Experimental Research on the Behaviour of Historical Brick Masonry Walls of 19th Century Buildings. Unpublished PhD Thesis, Istanbul Technical University.

  • Ion, R. M., Dumitriu, I., Fierascu, R. C., Ion, M. L., Pop, S. F., Radovici, C., Bunghez, R. I., & Niculescu, V. I. R. (2011). Thermal and mineralogical investigations of historical ceramic: A case study. Journal of Thermal Analysis and Calorimetry, 104(2), 487–493. https://doi.org/10.1007/s10973-011-1517-6

    Article  Google Scholar 

  • Kahya, Y. (1992). İstanbul Bizans Mimarisinde Kullanılan Tuğlaların Fiziksel ve Mekanik Özellikleri [Doctoral Thesis]. Unpublished PhD Thesis, Istanbul Technical University.

  • Kanmaz, M. B., & Ipekoǧlu, B. (2016). Antik Kentlerde Deprem Sonrası Yapılan Onarımlar: Anaia Bizans Kilisesi. Kargir Yapılarda Koruma ve Onarım Semineri VIII Conference Proceedings, 8, 189–205.

  • Kazancı, N., Dündar, S., Alçiçek, M. C., & Gürbüz, A. (2009). Quaternary deposits of the Büyük Menderes Graben in western Anatolia, Turkey: Implications for river capture and the longest Holocene estuary in the Aegean Sea. Marine Geology, 264(3–4), 165–176. https://doi.org/10.1016/j.margeo.2009.05.003

    Article  Google Scholar 

  • Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68, 277–279.

    Google Scholar 

  • Kumar Mishra, A., Mishra, A., & Anshumali. (2021). Geochemical Characterization of Bricks Used in Historical Monuments of 14–18th Century CE of Haryana Region of the Indian Subcontinent: Reference to Raw Materials and Production Technique. Construction and Building Materials, 269, 121802. https://doi.org/10.1016/j.conbuildmat.2020.121802

  • Kurugöl, S., & Tekin, Ç. (2010). Anadolu’da Bizans Dönemi kale Yapılarında Kullanılan Tuğlaların Fiziksel, Kimyasal ve Mekanik Özelliklerinin Değerlendirilmesi. Journal of the Faculty of Engineering and Architecture of Gazi Univeristy, 25(4), 767–777.

    Google Scholar 

  • Lopez-Arce, P., & Garcia-Guinea, J. (2005). Weathering traces in ancient bricks from historic buildings. Building and Environment, 40(7), 929–941. https://doi.org/10.1016/j.buildenv.2004.08.027

    Article  Google Scholar 

  • Malacrino, C. G. (2010). Constructing the Ancient World: Architectural Techniques of the Greeks and Romans. Getty Publications.

  • Mango, C. A. (1985). Byzantine architecture. Electa Editrice.

  • Maniatis, Y., & Tite, M. S. (1981). Technological Examination of Neolithic-Bronze Age Pottery from Central and Southeast Europe and from the Near East. Journal of Archaeological Science, 8(1), 59–76. https://doi.org/10.1016/0305-4403(81)90012-1

    Article  Google Scholar 

  • Maritan, L., Nodari, L., Mazzoli, C., Milano, A., & Russo, U. (2006). Influence of Firing Conditions on Ceramic Products: Experimental Study on Clay Rich in Organic Matter. Applied Clay Science, 31(1–2), 1–15. https://doi.org/10.1016/j.clay.2005.08.007

    Article  Google Scholar 

  • Mercangöz, Z. (2005). 4. Yılında Kuşadası, Kadıkalesi/Anaia Kazısı. Sanat Tarihi Dergisi, XIV–1, 205–223.

  • Mercangöz, Z. (2007). Emporion ve kommerkion olarak anaia’nın değişken tarihsel yazgısı. On İkinci ve On Üçüncü Yüzyıllarda Bizans Dünyasında Değişim, I. Uluslararası Sevgi Gönül Bizans Araştırmaları Sempozyumu / First International Sevgi Gönül Byzantine Studies Symposium, Bildiriler/ Proceedings, 25-28 June 2007, 279–292.

  • Mercangöz, Z. (2013). Archaeological Finds on Late Byzantine Commercial Productions at Kadıkalesi, Kuşadası. In Z. Mercangöz (Ed.), Byzantine Craftsmen - Latin Patrons (pp. 25–58).

  • Mercangöz, Z., & Tok, E. (2011). Kuşadası kadıkalesi 2010 kazı sezonu calışmaları. 33. Kazı Sonuçları Toplantısı-2, 23-28 May 2011, Ministry of Culture and Tourism, Ankara, 353–372.

  • Moorey, P. R. S. (1999). Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Eisenbrauns.

  • Moropoulou, A., Bakolas, A., & Bisbikou, K. (1995). Thermal Analysis as a Method of Characterizing Ancient Ceramic Technologies. Thermochimica Acta, 2570, 743–753.

    Article  Google Scholar 

  • Moropoulou, A., Çakmak, A., & Polikreti, K. (2002). Provenance and Technology Investigation of Agia Sophia Bricks, Istanbul, Turkey. Journal of the American Ceramic Society, 85(2), 366–372.

    Article  Google Scholar 

  • MTA. (2002). Türkiye jeoloji haritası / Geological map of Turkey (Denizli). Retrieved March 2, 2023. https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/DENIZLI.pdf

  • Munsell Color (Firm). (2000). Munsell Soil Color Charts: year 2000 revised washable edition. GretagMacbeth, Munsell Color.

  • Oguz, C., Turker, F., & Kockal, N. U. (2014). Construction materials used in the historical roman era bath in Myra. Scientific World Journal, 2014. https://doi.org/10.1155/2014/536105

  • Ousterhout, R. (1999). Master Builders of Byzantium. Princeton University Press.

    Google Scholar 

  • Özyıldırım, M., & Akyol, A. A. (2016). Olba Tuğla Örneği: Arkeolojik ve Arkeometrik Yaklaşım. Seleucia, 6, 395–411.

    Google Scholar 

  • Paama, L., Pitkãnen, I., & Perämäki, P. (2000). Analysis of archaeological samples and local clays using ICP-AES, TG-DTG and FTIR techniques. Talanta, 51(2), 349–357. https://doi.org/10.1016/S0039-9140(99)00281-7

    Article  Google Scholar 

  • Pavia, S. (2006). The Determination of Brick Provenance and Technology Using Analytical Techniques from the Physical Sciences. Archaeometry, 48(2), 201–218.

    Article  Google Scholar 

  • Pérez-Monserrat, E. M., Causarano, M., Maritan, L., Chavarria, A., Pietro, G., & Cultrone, G. (2022). Roman brick production technologies in Padua (Northern Italy) along the Late Antiquity and Medieval Times: Durable bricks on high humid environs. Journal of Cultural Heritage, 54, 12–20. https://doi.org/10.1016/j.culher.2022.01.007

    Article  Google Scholar 

  • Pérez-Monserrat, E. M., Maritan, L., Garbin, E., & Cultrone, G. (2021). Production Technologies of Ancient Bricks from Padua, Italy: Changing Colors and Resistance over Time. Minerals, 11(7). https://doi.org/10.3390/min11070744

  • Ramachandran, V. S., Paroli, R. M., Beaudoin, J. J., & Delgado, A. H. (2002). 12 - Clay-Based Construction Products. In V. S. Ramachandran, R. M. Paroli, J. J. Beaudoin, & A. H. Delgado (Eds.), Handbook of Thermal Analysis of Construction Materials (pp. 491–530). William Andrew Publishing. https://doi.org/10.1016/B978-081551487-9.50014-1

  • Rathossi, C., & Pontikes, Y. (2010). Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments. Part I: Reaction paths, crystalline phases, microstructure and colour. Journal of the European Ceramic Society, 30(9), 1841–1851. https://doi.org/10.1016/j.jeurceramsoc.2010.02.002

  • Riccardi, M. P., Messiga, B., & Duminuco, P. (1999). An Approach to the Dynamics of Clay Firing. Applied Clay Science, 15, 393–409.

    Article  Google Scholar 

  • RILEM. (1980). Essais recommandés pour mesurer l’altération des pierres et évaluer l’efficacité des méthodes de traitement / Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Materials and Construction, 13(73), 175–253.

  • Scalenghe, R., Barello, F., Saiano, F., Ferrara, E., Fontaine, C., Caner, L., Olivetti, E., Boni, I., & Petit, S. (2015). Material sources of the Roman brick-making industry in the I and II century A.D. from Regio IX, Regio XI and Alpes Cottiae. Quaternary International, 357, 189–206. https://doi.org/10.1016/j.quaint.2014.11.026

    Article  Google Scholar 

  • Scatigno, C., Prieto-Taboada, N., Preite Martinez, M., Conte, A. M., & Madariaga, J. M. (2018). A Non-Invasive Spectroscopic Study to Evaluate Both Technological Features and Conservation State of Two Types of Ancient Roman Coloured Bricks. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 204, 55–63. https://doi.org/10.1016/j.saa.2018.06.023

    Article  Google Scholar 

  • Scherer, G. W. (1999). Crystallization in pores. Cement and Concrete Research, 29(8), 1347–1358. https://doi.org/10.1016/S0008-8846(99)00002-2

    Article  Google Scholar 

  • Şerifaki, K. (2017). Determination of Byzantine Wall Painting Techniques in Western Anatolia [Doctoral Thesis]. Unpublished PhD Thesis, Izmir Institute of Technology.

  • Singh, P., & Sharma, S. (2016). Thermal and spectroscopic characterization of archeological pottery from Ambari, Assam. Journal of Archaeological Science: Reports, 5, 557–563. https://doi.org/10.1016/j.jasrep.2016.01.002

    Article  Google Scholar 

  • Stefanidou, M., Papayianni, I., & Pachta, V. (2015). Analysis and characterization of Roman and Byzantine fired bricks from Greece. Materials and Structures/materiaux Et Constructions, 48(7), 2251–2260. https://doi.org/10.1617/s11527-014-0306-7

    Article  Google Scholar 

  • Stuart, B. H. (2007). Molecular Spectroscopy. In Analytical Techniques in Materials Conservation (pp. 109–208). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470060520.CH4

  • Stubňa, I., & Podoba, R. (2013). Romanesque and Gothic Bricks from Church in Pác - Estimation of the Firing Temperature. Epitoanyag-Journal of Silicate Based and Composite Materials, 65, 48–51.

    Article  Google Scholar 

  • Taranto, M., Barba, L., Blancas, J., Bloise, A., Cappa, M., Chiaravalloti, F., Crisci, G. M., Cura, M., De Angelis, D., De Luca, R., Lezzerini, M., Pecci, A., & Miriello, D. (2019). The bricks of Hagia Sophia (Istanbul, Turkey): A new hypothesis to explain their compositional difference. Journal of Cultural Heritage, 38, 136–146. https://doi.org/10.1016/j.culher.2019.02.009

    Article  Google Scholar 

  • Tarhan, İ., & Işık, İ. (2020). An In-depth Chemometric Study: Archaeometric Characterization of Ceramic Shards Excavated from the Sanctuary of Hecate at Lagina in Muğla (Turkey) by FTIR Spectroscopy and Multivariate Data Analysis. Vibrational Spectroscopy, 111(September). https://doi.org/10.1016/j.vibspec.2020.103172

  • Tekin, Ç., & Kurugöl, S. (2011). Physicochemical and Pozzolanic Properties of the Bricks Used in Certain Historic Buildings in Anatolia. Gazi University Journal of Science, 24(4), 2011.

    Google Scholar 

  • Tepe, Ç., Sözbilir, H., Eski, S., Sümer, Ö., & Özkaymak, Ç. (2021). Updated historical earthquake catalog of İzmir region (Western Anatolia) and its importance for the determination of seismogenic source. Turkish Journal of Earth Sciences, 30(8), 779–805. https://doi.org/10.3906/yer-2101-14

    Article  Google Scholar 

  • Tucci, P. L. (2015). The Materials and Techniques of Greek and Roman Architecture. In The Oxford Handbook of Greek and Roman Art and Architecture (pp. 241–265). Oxford University Press.

  • Uğurlu Sağın, E. (2017). Anadolu’da Roma Dönemi Yapı Tuǧlalarının Özellikleri. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(1), 227–236. https://doi.org/10.17341/gazimmfd.300612

  • Uğurlu Sağın, E., & Böke, H. (2013). Characteristics of bricks used in the domes of some historic bath buildings. Journal of Cultural Heritage, 14(3 SUPPL), 73–76. https://doi.org/10.1016/j.culher.2012.11.030

    Article  Google Scholar 

  • Ulukaya, S., Yoruç, A. B. H., Yüzer, N., & Oktay, D. (2017). Material characterization of byzantine period brick masonry walls revealed in Istanbul (Turkey). Periodica Polytechnica Civil Engineering, 61(2), 209–215. https://doi.org/10.3311/PPci.8868

    Article  Google Scholar 

  • Valanciene, V., Siauciunas, R., & Baltusnikaite, J. (2010). The influence of mineralogical composition on the colour of clay body. Journal of the European Ceramic Society, 30(7), 1609–1617. https://doi.org/10.1016/j.jeurceramsoc.2010.01.017

    Article  Google Scholar 

  • Wang, S., Gainey, L., Mackinnon, I. D. R., Allen, C., Gu, Y., & Xi, Y. (2023). Thermal behaviors of clay minerals as key components and additives for fired brick properties: A review. Journal of Building Engineering, 66, 105802. https://doi.org/10.1016/J.JOBE.2022.105802

  • Warr, L. N. (2020). Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55(3), 261–264. https://doi.org/10.1180/CLM.2020.30

    Article  Google Scholar 

  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Wright, G. R. H. (2005). Ancient Building Technology, Volume 2: Materials (2 Vols). Brill.

  • Wright, G. R. H. (2009). Ancient Building Technology, Volume 3: Construction (2 vols). Brill.

Download references

Acknowledgements

The authors thank Prof. Dr Zeynep Mercangöz and the Kadıkalesi/Anaia excavation team for their support and guidance. They also thank the Centre for Materials Research at İzmir Institute of Technology for SEM-EDS, XRD, and TGA analyses.

Funding

This study was supported by B-type Scientific Research Project Funding of IZTECH (No: 2021IYTE-1–0080), in compliance with the M.Sc. thesis entitled ‘Characteristics of Byzantine Period Building Bricks Used in St. Jean Basilica (Ayasuluk Hill) and Anaia Church (Kadıkalesi)’ prepared by Elif Çam under the supervision of Elif Uğurlu Sağın.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Çam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çam, E., Uğurlu Sağın, E. Characteristics and Production Technologies of Byzantine Building Bricks from the Anaia Church in Western Anatolia. Clays Clay Miner. 71, 397–415 (2023). https://doi.org/10.1007/s42860-023-00247-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00247-3

Keywords

Navigation