Skip to main content
Log in

Catalytic Reduction of Congo Red to Low-Toxicity Forms Using a Low-Cost Catalyst Based on Modified Bentonite Material

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

The reduction of azo dyes to less toxic and more easily biodegradable amine derivatives is an effective strategy for the treatment of industrial wastewater. The present work aimed to study the reduction reaction of azo dye Congo red (CR) catalyzed by nanoparticles (NPs) of chromium oxides (Cr2O3NPs) immobilized on bentonite in the presence of NaBH4. Cr(III) ions were intercalated using ion exchange reactions to obtain Cr-bentonite, and then the immobilized chromium cations were treated using NaBH4 leading to the formation of Cr2O3NPs-bentonite. The physicochemical properties of the samples were investigated using X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), atomic absorption spectrometry (AAS), UV–Visible diffuse reflectance (UV–Vis DR), and Fourier-transform infrared (FTIR) spectroscopy techniques. The results showed the formation of various chromium species, in which the most dominant were chromium oxide nanoparticles, on the bentonite surface with an average particle size between 20 and 35 nm. Line-scan analysis showed a reactive catalytic surface due to the excellent distribution of Cr on the bentonite surfaces. The best-performing catalyst, Cr2O3NPs-bentonite, displayed significant catalytic activity compared to the bentonite and Cr-bentonite materials, with a full reduction time of 630 s and a rate constant, kapp, equal to 0.034 s–1. The resulting products (benzidine and sodium 3, 4-diaminonaphthalene-1-sulfonate) from the catalytic reduction exhibited low toxicity compared to the CR dye; these products are easy to use in chemical synthesis. All results collected from this work indicated that this low-cost catalyst can be exploited to eliminate other dyes from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All the data and materials for this study are available herein.

References

  • Abdelkrim, S., Mokhtar, A., Djelad, A., Bennabi, F., Souna, A., Bengueddach, A., & Sassi, M. (2020). Chitosan/ag-bentonite nanocomposites: Preparation, characterization, swelling and biological properties. Journal of Inorganic and Organometallic Polymers and Materials, 30, 831–840.

    Article  Google Scholar 

  • Abdelkrim, S., Mokhtar, A., Djelad, A., Hachemaoui, M., Boukoussa, B., & Sassi, M. (2022). Insights into catalytic reduction of dyes catalyzed by nanocomposite beads alginate@ Fe3O4: Experimental and DFT study on the mechanism of reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129595.

    Article  Google Scholar 

  • Ahmad, Z., Shamim, A., Mahmood, S., Mahmood, T., & Khan, F. U. (2018). Biological synthesis and characterization of chromium (III) oxide nanoparticles. Engineering and Applied Science Letters, 1, 23–29.

    Article  Google Scholar 

  • Alexander, J. A., Ahmad Zaini, M. A., Surajudeen, A., Aliyu, E.-N.U., & Omeiza, A. U. (2019). Surface modification of low-cost bentonite adsorbents—a review. Particulate Science and Technology, 37, 538–549.

    Article  Google Scholar 

  • Almontasser, A. & Parveen, A. Preparation and characterization of chromium oxide nanoparticles. Proceedings of the AIP Conference Proceedings, 2020, AIP Publishing LLC, Pp. 020010.

  • Andrades, M. S., Rodríguez-Cruz, M. S., Sánchez-Martín, M. J., & Sánchez-Camazano, M. (2004). Effect of the modification of natural clay minerals with hexadecylpyridinium cation on the adsorption–desorption of fungicides. International Journal of Environmental Analytical Chemistry, 84, 133–141.

    Article  Google Scholar 

  • Ansari Mojarad, A., Tamjidi, S., & Esmaeili, H. (2020). Clay/starch/Fe3O4 nanocomposite as an efficient adsorbent for the removal of methyl violet dye from aqueous media. International Journal of Environmental Analytical Chemistry, 102, 1–22.

    Google Scholar 

  • Arbaoui, F., & Boucherit, M. N. (2014). Comparison of two algerian bentonites: Physico-chemical and retention capacity study. Applied Clay Science, 91, 6–11.

    Article  Google Scholar 

  • Aroke, U., Abdulkarim, A., & Ogubunka, R. (2013). Fourier-transform infrared characterization of kaolin, granite, bentonite and barite. ATBU Journal of Environmental Technology, 6, 42–53.

    Google Scholar 

  • Asli, B., Abdelkrim, S., Zahraoui, M., Mokhtar, A., Hachemaoui, M., Bennabi, F., Ahmed, A. B., Sardi, A., & Boukoussa, B. (2022). Catalytic reduction and antibacterial activity of MCM-41 modified by silver nanoparticles. Silicon, 14, 12587–12598.

    Article  Google Scholar 

  • Avila, M. C., Lick, I. D., Comelli, N. A., & Ruiz, M. L. (2021). Adsorption of an anionic dye from aqueous solution on a treated clay. Groundwater for Sustainable Development, 15, 100688.

    Article  Google Scholar 

  • Bakr, E. A., El-Attar, H. G., & Salem, M. A. (2019). Colloidal ag@ pd core–shell nanoparticles showing fast catalytic eradication of dyes from water and excellent antimicrobial behavior. Research on Chemical Intermediates, 45, 1509–1526.

    Article  Google Scholar 

  • Benali, F., Boukoussa, B., Ismail, I., Hachemaoui, M., Iqbal, J., Taha, I., Cherifi, Z., & Mokhtar, A. (2021). One pot preparation of CeO2@ alginate composite beads for the catalytic reduction of mb dye: Effect of cerium percentage. Surfaces and Interfaces, 26, 101306.

    Article  Google Scholar 

  • Benmaati, A., Boukoussa, B., Hadjadj Aoul, R., Hachemaoui, M., Kerbadou, R. M., Habib Zahmani, H., & Hacini, S. (2022). Insights into catalytic reduction of organic pollutants catalyzed by nanoparticles supported on zeolite clinoptilolite. Silicon, 14, 8831–8843.

    Article  Google Scholar 

  • Carretero, M. I. (2002). Clay minerals and their beneficial effects upon human health. A Review. Applied Clay Science, 21, 155–163.

    Article  Google Scholar 

  • Carretero, M. I., Gomes, C., & Tateo, F. (2006). Clays and human health. Developments in Clay Science, 1, 717–741.

    Article  Google Scholar 

  • Chen, M., Liu, P., Wang, C., Ren, W., & Diao, G. (2014). Fast catalytic reduction of an azo dye by recoverable and reusable Fe3O4@ pani@ au magnetic composites. New Journal of Chemistry, 38, 4566–4573.

    Article  Google Scholar 

  • Cheng, M., Song, W., Ma, W., Chen, C., Zhao, J., Lin, J., & Zhu, H. (2008). Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation. Applied Catalysis B: Environmental, 77, 355–363.

    Article  Google Scholar 

  • Cheng, Y., Zhang, X., Xie, W., Chen, D. & Li, G. (2013) The adsorptive ability of Ti-pillared montmorillonite for lead (II) cations. Proceedings of the 2013 International Conference on Materials for Renewable Energy and Environment, pp. 577–580.

  • De León, M. A., Castiglioni, J., Bussi, J., & Sergio, M. (2008). Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process. Catalysis Today, 133, 600–605.

    Article  Google Scholar 

  • Gomes, Cd. S. F., & Silva, J. B. P. (2007). Minerals and clay minerals in medical geology. Applied Clay Science, 36, 4–21.

    Article  Google Scholar 

  • Hachemaoui, M., Boukoussa, B., Ismail, I., Mokhtar, A., Taha, I., Iqbal, J., Hacini, S., Bengueddach, A., & Hamacha, R. (2021a). CuNPs-loaded amines-functionalized-SBA-15 as effective catalysts for catalytic reduction of cationic and anionic dyes. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 623, 126729.

    Article  Google Scholar 

  • Hachemaoui, M., Mokhtar, A., Ismail, I., Mohamedi, M. W., Iqbal, J., Taha, I., Bennabi, F., Zaoui, F., Bengueddach, A., & Hamacha, R. (2021b). M (M: Cu Co, Cr or Fe) nanoparticles-loaded metal-organic framework mil-101 (Cr) material by sonication process: Catalytic activity and antibacterial properties. Microporous and Mesoporous Materials, 323, 111244.

    Article  Google Scholar 

  • Hayati-Ashtiani, M. (2011). Characterization of nano-porous bentonite (montmorillonite) particles using FTIR and BET-BJH analyses. Particle & Particle Systems Characterization, 28, 71–76.

    Article  Google Scholar 

  • Hosseini, F., Hosseini, F., Jafari, S. M., & Taheri, A. (2018). Bentonite nanoclay-based drug-delivery systems for treating melanoma. Clay Minerals, 53, 53–63.

    Article  Google Scholar 

  • Hudson, M. (1984) Journal of environmental science and health. Part c: Environmental carcinogenesis reviews: Edited by joseph g. Arcos, mary f. Argus and yin-tak woo. Price: Volume 1, number 1, 1983 (2 issues), institutional rate $31.50, individual rate $15.75. Issn: 0736-3001. Food Chemistry, 15, 67.

  • Ikhtiyarova, G., Özcan, A. S., Gök, Ö., & Özcan, A. (2012). Characterization of natural and organobentonite by XRD, SEM, FT-IR, and thermal analysis techniques and its adsorption behaviour in aqueous solutions. Clay Minerals, 47, 31–44.

    Article  Google Scholar 

  • Imanipoor, J., Mohammadi, M., & Dinari, M. (2021). Evaluating the performance of l-methionine modified montmorillonite k10 and 3-aminopropyltriethoxysilane functionalized magnesium phyllosilicate organoclays for adsorptive removal of azithromycin from water. Separation and Purification Technology, 275, 119256.

    Article  Google Scholar 

  • Jana, D., & De, G. (2012). Controlled and stepwise generation of Cu2O, Cu2O@Cu and Cu nanoparticles inside the transparent alumina films and their catalytic activity. RSC Advances, 2, 9606–9613.

  • Jlassi, K., Krupa, I., & Chehimi, M.M. (2017) Overview: Clay preparation, properties, modification. Chapter 1, pp. 1–28 In K. Jlassi, M.M. Chehimi, and S. Thomas (eds.). Clay-Polymer Nanocomposites, Elsevier, https://urldefense.com/v3/__https://doi.org/10.1016/B978-0-323-46153-5.00001-X

  • Joseph, A., Vellayan, K., González, B., Vicente, M. A., & Gil, A. (2019). Effective degradation of methylene blue in aqueous solution using pd-supported Cu-doped Ti-pillared montmorillonite catalyst. Applied Clay Science, 168, 7–10.

    Article  Google Scholar 

  • Kaur, N., & Kishore, D. (2012). Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis. Journal of Chemistry and Pharmaceutical Research, 4, 991–1015.

    Google Scholar 

  • Khan, S. A., Shahid, S., Hanif, S., Almoallim, H. S., Alharbi, S. A., & Sellami, H. (2021). Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities. International Journal of Molecular Sciences, 22, 502.

    Article  Google Scholar 

  • Korichi, S., Elias, A., & Mefti, A. (2009). Characterization of smectite after acid activation with microwave irradiation. Applied Clay Science, 42, 432–438.

    Article  Google Scholar 

  • Krishnan, S.K., Subbiah, K., Kalivel, P. & Subramanian, K. (2021) Degradation of azo dye red me4bl treated with immobilised bimetallic zero-valent iron nanoparticles doped with palladium. International Journal of Environmental Analytical Chemistry, 1–12. https://doi.org/10.1080/03067319.2021.2007381

  • Li, H., Wu, P., Dang, Z., Zhu, N., Li, P., & Wu, J. (2011). Synthesis, characterization, and visible-light photo-fenton catalytic activity of hydroxy Fe/Al-intercalated montmorillonite. Clays and Clay Minerals, 59, 466–477.

    Article  Google Scholar 

  • Liang, S.-T., Zhang, H.-L., Luo, M.-T., Luo, K.-J., Li, P., Xu, H.-B., & Zhang, Y. (2014). Colour performance investigation of a Cr2O3 green pigment prepared via the thermal decomposition of CrOOH. Ceramics International, 40, 4367–4373.

    Article  Google Scholar 

  • Liang, S.-T., Zhang, H.-L., Luo, M.-T., Liu, H.-X., Bai, Y.-L., Xu, H.-B., & Zhang, Y. (2015). Preparation of Cr2O3-based pigments with high NIR reflectance via thermal decomposition of CrOOH. Transactions of Nonferrous Metals Society of China, 25, 2646–2647.

    Article  Google Scholar 

  • Madejová, J., & Komadel, P. (2001). Baseline studies of The Clay Minerals Society source clays: Infrared methods. Clays and Clay Minerals, 49, 410–432.

    Article  Google Scholar 

  • Madhav, S., Ahamad, A., Singh, P., & Mishra, P. K. (2018). A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods. Environmental Quality Management, 27, 31–41.

    Article  Google Scholar 

  • Madi, C., Tabbal, M., Christidis, T., Isber, S., Nsouli, B. & Zahraman, K. Microstructural characterization of chromium oxide thin films grown by remote plasma assisted pulsed laser deposition. Proceedings of the Journal of Physics: Conference Series, 2007, IOP Publishing, Pp. 128.

  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441.

    Article  Google Scholar 

  • Mekki, A., Hachemaoui, M., Mokhtar, A., Issam, I., Bennabi, F., Iqbal, J., Rahmani, K., Bengueddach, A., & Boukoussa, B. (2022). Catalytic behavior and antibacterial/antifungal activities of new mnps/zeolite@ alginate composite beads. International Journal of Biological Macromolecules, 198, 37–45.

    Article  Google Scholar 

  • Mokhtar, A., Bennabi, F., Abdelkrim, S., Sardi, A., Boukoussa, B., Souna, A., Bengueddach, A., & Sassi, M. (2020). Evaluation of intercalated layered materials as an antimicrobial and drug delivery system: A comparative study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 96, 353–364.

    Article  Google Scholar 

  • Naseem, K., Farooqi, Z. H., Begum, R., & Irfan, A. (2018). Removal of congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. Journal of Cleaner Production, 187, 296–307.

    Article  Google Scholar 

  • Ngah, W. W., Teong, L., Toh, R., & Hanafiah, M. (2012). Utilization of chitosan–zeolite composite in the removal of Cu (II) from aqueous solution: Adsorption, desorption and fixed bed column studies. Chemical Engineering Journal, 209, 46–53.

    Article  Google Scholar 

  • Park, J.-H., Shin, H.-J., Kim, M. H., Kim, J.-S., Kang, N., Lee, J.-Y., Kim, K.-T., Lee, J. I., & Kim, D.-D. (2016). Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. Journal of Pharmaceutical Investigation, 46, 363–375.

    Article  Google Scholar 

  • Patterson, A. (1939). The scherrer formula for x-ray particle size determination. Physical Review, 56, 978.

    Article  Google Scholar 

  • Petrović, R., Lazarević, S., Janković-Častvan, I., Matić, T., Milivojević, M., Milošević, D., & Veljović, Đ. (2023). Removal of trivalent chromium from aqueous solutions by natural clays: Valorization of saturated adsorbents as raw materials in ceramic manufacturing. Applied Clay Science, 231, 106747.

    Article  Google Scholar 

  • Singh, B. K., Lee, S., & Na, K. (2020). An overview on metal-related catalysts: Metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Metals, 39, 751–766.

    Article  Google Scholar 

  • Teğin, İ. & Saka, C. (2021) Chemical and thermal activation of clay sample for improvement adsorption capacity of methylene blue. International Journal of Environmental Analytical Chemistry, 1–12. https://doi.org/10.1080/03067319.2021.1928105

  • Tharmaraj, V., Vandarkuzhali, S. A. A., Karthikeyan, G., & Pachamuthu, M. (2022). Efficient and recyclable AuNPs@ aminoclay nanocomposite catalyst for the reduction of organic dyes. Surfaces and Interfaces, 32, 102052.

    Article  Google Scholar 

  • Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., & Yu, G. (2019). Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Separation and Purification Technology, 224, 373–387.

    Article  Google Scholar 

  • Varadavenkatesan, T., Selvaraj, R., & Vinayagam, R. (2020). Green synthesis of silver nanoparticles using thunbergia grandiflora flower extract and its catalytic action in reduction of congo red dye. Materials Today: Proceedings, 23, 39–42.

    Google Scholar 

  • Zhang, Q., Gao, S., & Yu, J. (2022). Metal sites in zeolites: Synthesis, characterization, and catalysis. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.2c00315

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Deanship of Scientific Research at King Khalid University for funding this work through a research project number RGP.2/226/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mokhtar.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Associate Editor: Jun Kawamata

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 315 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahraoui, M., Mokhtar, A., Medjhouda, Z.A.K. et al. Catalytic Reduction of Congo Red to Low-Toxicity Forms Using a Low-Cost Catalyst Based on Modified Bentonite Material. Clays Clay Miner. 71, 74–90 (2023). https://doi.org/10.1007/s42860-023-00226-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00226-8

Keywords

Navigation