Skip to main content
Log in

Genesis of Smectites associated with a Coal Seams Succession in the Neogene Orhaneli and Keles Coal Deposits (Bursa), NW Turkey

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

The Bursa-Orhaneli and Keles-Harmanalan coal deposits were developed in swampy and fluvial-lacustrine environments in western Anatolia under the E–W-trending graben zone during the Neogene. The present study aimed to determine the mineralogical and geochemical properties of clays interlayering the coal seams to define the origin of clay minerals, in particular, smectite. These deposits, comprising argillaceous sediment, marl, coal seam, mudstone, organic-rich shale, and sandstone, were deposited in a lacustrine environment accompanied by volcanogenic materials. The characteristics of sediments and their parent rocks were examined using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, palynology, and chemical analyses. The association of abundant smectite with quartz, amphibole, accessory chlorite, and a decrease in feldspar in fluvial-lacustrine sediments compared to those in the smectite accompanied by feldspar and volcanic glass and the absence of quartz and amphibole in the pyroclastic units suggest that smectite had detrital and authigenic origins. Flaky smectite shows either detrital, irregularly outlined coating and filling pores of terrigenous sediments or in situ precipitation edging resorbed feldspar and devitrified volcanic glass. Chemical analyses of the smectite-rich fraction show montmorillonite compositions with an average structural formula of: (Ca0.42Na0.25K0.08)(Al2.76Fe0.47Mg0.59Ti0.07Mn0.002)(Si7.65Al0.35)O20(OH)4.

The positive correlation of Al2O3 vs. TiO2 and K2O vs. Rb may be related to the abundant detrital input. Feldspar and biotite were replaced by illite during diagenesis.

An increase in the Ni/Co and V/(V + Ni) ratios in the altered units also suggest oxic, suboxic to anoxic conditions, under the control of a dry, warm to subtropical climate in fresh water and lakes during the Late Eocene to Middle Miocene. The slight enrichment of light rare earth elements (LREE) compared to heavy rare earth elements (HREE) with positive Eu and positive/negative Ce anomalies reflect fractional crystallization of feldspar. The δ18O and δD values of smectite and illite fractions and the wide range of δ34S isotope values (–1.5 to 15‰) for pyrite and chalcopyrite associated with coal indicate a signature of both diagenetic and partial hydrothermal origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data are available in the five Tables and 15 Figures included here.

Code availability

Not applicable.

References

  • Akinyemi, S. A., Adebayo, O. F., Ojo, O. A., Fadipe, O. A., & Gitari, W. M. (2013). Mineralogy and geochemical appraisal of paleo-redox indicators in Maastrichtian Outcrop shales of Mamu Formation, Anambra Basin, Nigeria. Journal Natural Sciences Research, 3, 48–64.

    Google Scholar 

  • Aldega, L., Cuadros, J., Laurora, A., & Rossi, A. (2009). Weathering of phlogopite to beidellite in a karstic environment. American Journal of Science, 309, 689–710.

    Article  Google Scholar 

  • Arslan, M., Abdioğlu, E., & Kadir, S. (2010). Mineralogy, geochemistry and origin of bentonite in Upper Cretaceous pyroclastic units of the Tirebolu area, Giresun, Northeast Turkey. Clays and Clay Minerals, 58, 120–141.

    Article  Google Scholar 

  • Başol, B. (2009). Büyükorhan granitoyidi kuzey kenarının petrografisi ve yan kayaçlarla ilişkisi (Orhaneli batısı, Bursa) (p. 215). MSc thesis, İstanbul Univ., İstanbul.

  • Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare–earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.

    Article  Google Scholar 

  • Bayraktar, C., & Altınay, A. (1985). Balıkesir Bursa-Keles-Davutlar sahası sondajlı linyit aramaları (p. 179). Mineral Research and Exploration of Turkey (MTA) Report No. 7780.

  • Benda, L., Innocenti, F., Mazzuoli, R., Radicati, F., & Steffens, P. (1974). Stratigraphic and radiometric data of the Neogene in northwest Turkey (Cenozoic and Lignites in Turkey). Zeitschrift Der Deutschen Geologischen Gesellschaft, 125, 183–193.

    Article  Google Scholar 

  • Bilgin, Y., Aksoy, D., & Dost, E. (1988). Davutlar (Bursa-Keles) linyit sahası değerlendirme raporu (pp. 145). Mineral Research and Exploration of Turkey (MTA) Report No. 8450.

  • Bohor, B. F., & Triplehorn, D. M. (1993). Tonsteins: Altered volcanic ash layers in coal-bearing sequences. Geological Society of America, Special Paper, 285, 1–44.

    Article  Google Scholar 

  • Brindley, G. W. (1980). Quatitative X-Ray mineral analyses of clays. In G. W. Brindley & G. Brown (Eds.), Crystal Structures of Clay Minerals and their X-ray Identification (pp. 411–438). Monograph 5, Mineralogical Society.

  • Brownfield, M. E., Affolter, R. H., Cathcart, J. D., Johnson, S. Y., Brownfield, I. K., & Rice, C. A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal of Coal Geology, 63, 247–275.

  • Chen, B., Liu, G., Wu, D., & Sun, R. (2016). Comparative study on geochemical characterization of the Carboniferous aluminous argillites from the Huainan Coal Basin, China. Turkish Journal of Earth Sciences, 25, 274–287.

    Article  Google Scholar 

  • Christidis, G., & Dunham, A. C. (1993). Compositional variations in smectites: Part I. Alteration of intermediate volcanic rocks a case study from Milos Island, Greece. Clay Minerals, 28, 255–273.

    Article  Google Scholar 

  • Christidis, G., & Dunham, A. C. (1997). Compositional variations in smectites. Part II: Alteration of acidic precursors. A case study from Milos Island, Greece. Clay Minerals, 32, 253–270.

    Article  Google Scholar 

  • Clayton, R. N., & Mayeda, T. K. (1963). The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 43–52.

    Article  Google Scholar 

  • Compton, J. S., Conrad, M. E., & Vennemann, T. W. (1999). Stable isotope evolution of volcanic ash layers during diagenesis of the Miocene Monterey Formation, California. Clays and Clay Minerals, 47, 84–95.

    Article  Google Scholar 

  • Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703.

    Article  Google Scholar 

  • Crowley, S. S., Stanton, R. W., & Ryer, T. A. (1989). The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah. Organic Geochemistry, 14, 315–331.

    Article  Google Scholar 

  • Cuadros, J., Caballero, E., Huertas, F. J., de Cisneros, J., & C., Huertas, F., & Linares, J. (1999). Experimental alteration of volcanic tuff: Smectite formation and effect on 18O isotope composition. Clays and Clay Minerals, 47, 769–776.

    Article  Google Scholar 

  • Çelik, Y., Karayiğit, A. I., Oskay, R. G., Kayseri Özer, M. S., Christanis, K., Hower, J. C., & Querol, X. (2021). A multidisciplinary study and palaeoenvironmental interpretation of middle Miocene Keles lignite (Harmancık Basin, NW Turkey), with emphasis on syngenetic zeolite formation. International Journal of Coal Geology, 237, 1–33.

    Article  Google Scholar 

  • Çetin, A. (1985). Harmancık-Kozluca (Bursa-Orhaneli) dolayının jeolojisi ve linyit olanakları (p. 35). Mineral Research and Exploration of Turkey (MTA) Report No. 7660.

  • Çiflikli, M., Çiftçi, E., & Bayhan, H. (2013). Alteration of glassy volcanic rocks to Naand Ca-smectites in the Neogene basin of Manisa, western Anatolia, Turkey. Clay Minerals, 48, 513–527.

    Article  Google Scholar 

  • Dai, S., Graham, I. T., & Ward, C. R. (2016). A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159, 82–95.

    Article  Google Scholar 

  • Durand, B., & Nicaise, G. (1980). Procedures for kerogen isolation. In B. Durand (Ed.), Kerogen insoluble organic matter from sedimentary rocks (pp. 35–53). 

  • Ece, Ö. I., Ekinci, B., Schroeder, P. A., Crowe, D., & Esenli, F. (2013). Origin of kaolin-alunite deposits in Simav Graben, Turkey: Timing styles of hydrothermal mineralization. Journal of Volcanology and Geothermal Research, 255, 57–78.

    Article  Google Scholar 

  • Erkoyun, H., Kadir, S., Külah, T., & Huggett, J. (2017). Mineralogy, geochemistry and genesis of clays interlayered coal seams succession in the Neogene lacustrine Seyitömer coal deposit, Kütahya, western Turkey. International Journal of Coal Geology, 172, 112–133.

    Article  Google Scholar 

  • Erkoyun, H., Kadir, S., & Huggett, J. (2019). Occurrence and genesis of tonsteins in the Miocene lignite, Tunçbilek Basin, Kütahya, western Turkey. International Journal of Coal Geology, 202, 46–68.

    Article  Google Scholar 

  • Erkut, E. (2016). Bursa Orhaneli bölgesi, Sadağ ve civarının hidrojeolojisi (p. 120). MSc thesis, İstanbul Technical University, İstanbul.

  • Esenli, F., Kadir, S., & Ekinci Şans, B. (2019). Geochemistry of the zeolite-rich Miocene pyroclastic rocks from the Gördes, Demirci and Şaphane regions, west Anatolia, Turkey. Geochemistry International, 57, 1158–1172.

    Article  Google Scholar 

  • Floyd, P. A., Winchester, J. A., & Park, R. G. (1989). Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45, 203–214.

    Article  Google Scholar 

  • Güven, N. (1988). Smectites. In S. W. Bailey (Ed.), Hydrous phyllosilicates (Vol. 19, pp. 497–559). Mineralogical Society of America.

  • Hallberg, R. O. (1976). A geochemical method for investigation of palaeo-redox conditions in sediments. Ambio Special Report, 4, 139–147.

    Google Scholar 

  • Harnois, L. (1988). The CIW index: A new Chemical Index of Weathering. Sedimentary Geology, 55, 319–322.

    Article  Google Scholar 

  • Hatch, J. R., & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Sedimentary Geology, 99, 65–82.

    Google Scholar 

  • Hayba, D. O., Bethke, P. M., Heald, P., & Faley, N. K. (1985). Geologic, mineralogic and geochemical characteristics of volcanic-hosted epithermal precious-metal deposits. Reviews in Economic Geology, 2, 129–167.

    Google Scholar 

  • Hosono, T., Lorphensriand, O., Onodera, S.-i, Okawa, H., Nakano, T., Yamanaka, T., Tsujimura, M., & Taniguchi, M. (2014). Different isotopic evolutionary trends of δ34S and δ18O compositions of dissolved sulfate in an aerobic deltaic aquifer system. Applied Geochemistry, 46, 30–42.

    Article  Google Scholar 

  • Hower, J., Eslinger, E. V., Hower, M. E., & Perry, E. A. (1976). Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725–737.

    Article  Google Scholar 

  • Jiang, Y., Qian, H., & Zhou, G. (2016). Mineralogy and geochemistry of different morphological pyrite in late Permian coals. South Chin. Arabian Journal of Geosciences, 9, 1–18.

    Google Scholar 

  • Jackson, M. L. (1956). Soil chemical analysis – advanced course (p. 894). Madison, Wisconsin, USA, published by the Author.

  • Jin, R., Feng, X., Teng, X., Nie, F., Cao, H., Hou, H., Liu, H., Miao, P., Zhao, H., Chen, L., Zhu, Q., & Zhou, X. (2020). Genesis of green sandstone/mudstone from Middle Jurassic Zhiluo Formation in the Dongsheng Uranium Orefield, Ordos Basin and its enlightenment for uranium mineralization, China. Geology, 3, 52–66.

    Google Scholar 

  • Jones, B., & Manning, D. A. C. (1994). Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones. Chemical Geology, 111, 111–129.

    Article  Google Scholar 

  • Kadir, S., Aydoğan, M. S., Elitok, Ö., & Helvacı, C. (2015). Composition and genesis of the nickel-chrome-bearing nontronite and montmorillonite in lateritized ultramafic rocks in the Muratdağı region (Uşak, western Anatolia), Turkey. Clays and Clay Minerals, 63, 163–184.

    Article  Google Scholar 

  • Karayiğit, A. I., Littke, R., Querol, X., Jones, T., Oskay, R. G., & Christanis, K. (2017). The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. International Journal of Coal Geology, 173, 110–128.

    Article  Google Scholar 

  • Konak, A. (2002). 1/500.000 Scale Geological Map of Turkey, İzmir. General Directorate of Mineral Research and Exploration of Turkey.

  • Kunze, G. W., & Dixon, J. B. (1986). Pretreatment for mineralogical analysis. In A. Klute (Ed.), Methods of Soil Analysis, part 1. Physical and Mineralogical Methods (2nd ed., pp. 91–100). American Society of Agronomy, Inc. and the Soil Science Society of America, Inc.

  • Lefticariu, L. (2009). Intergrated study of mercury and trace elements distribution in Illinois coal (p. 44). Final Report, Illinois Clean Coal Institute.

  • Leggo, P. J., Cocheme, J.-J., Demant, A., & Lee, W. T. (2001). The role of argillic alteration in the zeolitization of volcanic glass. Mineralogical Magazine, 65, 653–663.

    Article  Google Scholar 

  • Li, M. Y. H., & Zhou, M.-F. (2020). The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. American Mineralogist, 105, 92–108.

    Article  Google Scholar 

  • Loges, A., Wagner, T., Barth, M., Bau, M., & Göb., S., & Markl, G. (2012). Negative Ce anomalies in Mn oxides: The role of Ce+4 mobility during water-mineral interaction. Geochimica et Cosmochimica Acta, 86, 296–402.

  • Lyons, P. C., Whelan, J. F., & Dulong, F. T. (1989). Marine origin of pyritic sulfur in the Lower Bakerstown coal bed, Castleman coal field, Maryland (USA). International Journal of Coal Geology, 12, 329–348.

    Article  Google Scholar 

  • Mastalerz, M., Drobniak, A., Eble, C., Ames, P., & McLaughlin, P. (2020). Rare earth elements and yttrium in Pennsylvanian coals and shales in the eastern part of the Illinois Basin. International Journal of Coal Geology, 231, 1–20.

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C. (1989). X-Ray Diffraction and the Identification and Analysis of Clay Minerals (p. 332). Oxford University Press.

    Google Scholar 

  • Motoki, A., Sichel, S. E., Vargas, T., Melo, D. P., & Motoki, K. F. (2015). Geochemical behavior trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil. Anais Da Academia Brasileira De Ciȇncias, 87, 1959–1979.

    Article  Google Scholar 

  • Nakoman, E. (1968). Contribution à l’étude de la microflore tertiaire des lignites de Seyitömer (Turquie). Pollen Et Spores, 10, 521–556.

    Google Scholar 

  • Noori, B., Ghadimvand, N. K., Movahed, B., & Yousefpour, M. (2016). Provenance and tectonic setting of Late Lower Cretaceous (Albian) Kazhdumi Formation sandstones (SW Iran). Open Journal of Geology, 6, 721–739.

    Article  Google Scholar 

  • Ohmoto, H., & Rye, R. O. (1979). Isotopes of sulfur and carbon. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (pp. 509–567). New York.

  • Okay, A. I., Harris, N. B. W., & Kelley, S. P. (1998). Exhumation of blueschists along a Tethyan suture in northwest Turkey. Tectonophysics, 285, 275–299.

    Article  Google Scholar 

  • Okay, A. I., Nobble, P. J., & Tekin, U. K. (2011). Devonian radiolarian ribbon cherts from the Karakaya Complex, NW Turkey: Implications for the Paleo-Tethyan evolution. Comptes Rendus Palevol, 10, 1–10.

    Article  Google Scholar 

  • Oskay, R. G., Bechtel, A., & Karayiğit, A. I. (2019). Mineralogy, petrography and organic geochemistry of Miocene coal seams in the Kınık coalfield (Soma Basin-Western Turkey): Insights into depositional environment and palaeovegetation. International Journal of Coal Geology, 210, 1–22.

    Article  Google Scholar 

  • Örgün, Y. (1993). Topuk-Göynükbelen (Orhaneli-Bursa) yöresi Nikel oluşumlarının kökensel incelemesi (p. 216). PhD thesis, İstanbul Technical Univ., İstanbul.

  • Özaksoy, V., Elmacı, H., Özalp, S., Kara, M., & Duman, T. Y. (2018). Holocene activity of the Orhaneli Fault based on palaoseismological data, Bursa, NW Anatolia. Bulletin of the Mineral Research and Exploration, 156, 1–16.

    Google Scholar 

  • Reinink-Smith, L. M. (1990). Mineral asssemblages of volcanic and detrital partings in Tertiary coal beds, Kenai Peninsula, Alaska. Clays and Clay Minerals, 38, 97–108.

    Article  Google Scholar 

  • Rivas-Sanchez, M., Alva-Valdivia, L., Arenas-Alatorre, J., Urrutia-Fucugauchi, J., Ruiz-Sandoval, M., Roberts, F. I., & Loughnan, F. C. (1989). Mineralogy and economic significance of bentonite occurrences in the upper Hunter Valley. In Proceedings of Mineralogy-Petrology Symposium, MINPET 89 (pp. 123–127). Australasian Institute of Mining and Metallurgy.

  • Roche, E., & Schuler, M. (1980). Étude palynologique du Complexe de Kallo. S.G.B. Professional Paper, 178, 13.

  • Sáez, A., Inglès, M., Cabrera, L., & de las Heras, A. (2003). Tectonic-palaeoenvironmental forcing of clay-mineral assemblages in nonmarine settings: The Oligocene-Miocene As Pontes Basin (Spain). Sedimentary Geology, 159, 305–324.

    Article  Google Scholar 

  • Sarıfakıoğlu, E., Özen, H., & Winchester, J. A. (2009). Petrogenesis of the Refahiye ophiolite and its tectonic significance for Neotethyan ophiolites along the İzmir-Ankara-Erzincan suture zone. Turkish Journal of Earth Sciences, 18, 187–207.

    Google Scholar 

  • Scott, C., Deonarine, A., Kolker, A., Adams, M., & Holland, J. (2015). Size distribution of rare earth elements in coal ash. In World of Coal Ash Conference, Nashville, TN.

  • Selim, H. H., Tüysüz, O., & Barka, A. (2006). Güney Marmara bölümünün Neotektoniği (Neotectonics of the south Marmara sub-region). İTÜ Dergisi, 5, 151–160 (in Turkish with English abstract).

  • Senkayi, A. L., Ming, D. W., Dixon, J. B., & Hosner, L. R. (1987). Kaolinite, opal-CT, and clinoptilolite in altered tuffs interbedded with lignite in the Jackson Group, Texas. Clays and Clay Minerals, 35, 281–290.

    Article  Google Scholar 

  • Sezgül Kayseri, M., & Akgün, F. (2008). Palynostratigraphic, palaeovegetational and palaeoclimatic investigations on the Miocene deposits in central Anatolia (Çorum region and Sivas basin). Turkish Journal of Earth Sciences, 17, 361–403.

    Google Scholar 

  • Shangguan, Y., Zhuang, X., Li, J., Li, B., Querol, X., Liu, B., Moreno, N., Yuan, W., Yang, G., & Pan, L. (2020). Geological controls on mineralogy and geochemistry of the Permian and Jurassic coals in the Shanbei Coalfield, Shaanxi Province, North China. Minerals, 10, 1–34.

    Article  Google Scholar 

  • Sheppard, S. M. F., Nielsen, R. L., & Taylor, H. P. (1969). Oxygen and hydrogen isotope ratios of clay minerals from porphry copper deposits. Economic Geology, 64, 755–777.

    Article  Google Scholar 

  • Sheppard, S. M. F. (1986). Characterization and isotopic variations in natural waters. In J. W. Valley, H. P. Taylor & J. R. O’Neil (Eds.), Stable isotopes in high temperature geological processes reviews in mineralogy (pp. 141–162).

  • Sheppard, S. M. F., & Gilg, H. A. (1996). Stable isotope geochemisty of clay minerals. Clay Minerals, 31, 1–24.

    Article  Google Scholar 

  • Smith, J. W., & Batts, B. D. (1974). The distribution and isotopic composition of sulfur in coal. Geochimica et Cosmochimica Acta, 38, 121–133.

    Article  Google Scholar 

  • Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Research, 56, 329–345.

    Google Scholar 

  • Şengüler, İ. (2004). Güney Marmara Bölgesi kömürleri. Jeoloji Mühendisliği Dergisi, 28, 31–38.

    Google Scholar 

  • Takagi, T., Koh, S. M., Song, M. S., Itoh, M., & Mogi, K. (2005). Geology and properties of the Kawasaki and Dobuyama bentonite deposits of Zao region in northeastern Japan. Clay Minerals, 40, 333–350.

    Article  Google Scholar 

  • Taunton, A. E., Welch, S. A., & Banfield, J. F. (2000). Microbial controls on phosphate and lantanide distributions during granite weathering and soil formation. Chemical Geology, 169, 71–382.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crustal: Its composition and Evolution (p. 312). Blakwell.

    Google Scholar 

  • Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Springer-Verlag.

    Book  Google Scholar 

  • Uysal, I. T. (2000). Clay-mineral authigenesis in the Late Permian coal measures, Bowen basin, Queensland, Australia. Clays and Clay Minerals, 48, 351–365.

    Article  Google Scholar 

  • Yiğitel, İ., Altınay, A., & Özcan, K. (1989). Bursa-Keles-Davutlar kömür sahası jeoloji raporu (p. 62). Mineral Research and Exploration of Turkey (MTA) Report No. 8767.

  • Yossifova, M. G., Dimitrova, D. A., & Ivanova, R. I. (2018). Mineral and chemical composition of some claystones from the Troyanovo-3 mine. Maritsa East Lignite Basin, Bulgaria International Journal of Coal Geology, 196, 93–105.

    Article  Google Scholar 

  • Wheeler, A., & Götz, A. E. (2017). Palynofacies as a tool for high-resolution palaeoenvironmental and palaeoclimatic reconstruction of Gondwana post-glacial coal deposits: No. 2 Coal Seam, Witbank Coalfield (South Africa). Palaeobiodiversity and Palaeoenvironments, 97, 259–271.

    Article  Google Scholar 

  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.

    Article  Google Scholar 

  • Wolff, J. A., Forni, F., Ellis, B. S., & Szymanowski, D. (2020). Europium and barium enrichments in compositionally zoned felsic tuffs: A smoking gun for the origin of chemical and physical gradients by cumulate melting. Earth and Planetary Science Letters, 540, 1–12.

    Article  Google Scholar 

  • Xiong, J., Liu, X., & Liang, L. (2015). Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 22, 530–539.

    Article  Google Scholar 

  • Zhao, L., Ward, C. R., French, D., & Graham, I. T. (2012). Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin, Australia. International Journal of Coal Geology, 113, 94–110.

    Article  Google Scholar 

  • Zhao, L., Dai, S., Graham, I. T., & Wang, P. (2016). Clay mineralogy of coal-hosted Nb-Zr-REE-Ga mineralized beds from Late Permian strata, eastern Yunnan, SW China: Implications for paleotemperature and origin of the micro-quartz. Minerals, 6, 45.

    Article  Google Scholar 

  • Zhao, Q., Niu, Y., Xie, Z., Zhang, K., Zhou, J., & Arbuzov, S. I. (2020). Geochemical characteristics of elements in coal seams 41 and 42 of Heshan Coalfield, South China. Energy Exploration & Exploitation, 38, 137–157.

    Article  Google Scholar 

  • Zou, J., Tian, H., & Li, T. (2016). Geochemistry and Mineralogy of Tuff in Zhongliangshan Mine, Chongqing. Southwestern China Minerals, 6, 47.

    Google Scholar 

  • Zielinski, R. A. (1983). The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colarado, U.S.A. Chemical Geology, 35, 185–204.

    Article  Google Scholar 

Download references

Acknowledgements

This present study was supported financially by the Scientific Research Projects Fund of Eskişehir Osmangazi University in the framework of Project 2014-368. The authors are grateful to the anonymous reviewers, to Associate Editor Chun Hui Zhou, to the Editor-in-Chief Joseph W. Stucki, and to the Managing Editor, Kevin Murphy, for their extremely careful and constructive reviews and suggestions that improved the quality of the paper significantly. The preliminary and advanced stages of this paper were presented at the Euroclay 2019 conference, held in Paris, France, and the 17th International Clay Conference held in İstanbul, Turkey, respectively.

Funding

This present study was supported financially by the Scientific Research Projects Fund of Eskişehir Osmangazi University in the framework of Project 2014–368.

Author information

Authors and Affiliations

Authors

Contributions

Hülya Erkoyun: Field studies, Determination of the analyzed data, Drafting of the manuscript.

Selahattin Kadir: Field studies, Determination of the analyzed data, Drafting of the manuscript.

Tacit Külah: Field studies, Determination of the analyzed data, Drafting of the manuscript.

Corresponding author

Correspondence to Hülya Erkoyun.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that there is no conflict of interest or competing interests.

Ethics approval and consents to participate

Not applicable.

Additional information

Associate Editor: Chun Hui Zhou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkoyun, H., Kadir, S. & Külah, T. Genesis of Smectites associated with a Coal Seams Succession in the Neogene Orhaneli and Keles Coal Deposits (Bursa), NW Turkey. Clays Clay Miner. 70, 628–659 (2022). https://doi.org/10.1007/s42860-022-00209-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-022-00209-1

Keywords

Navigation