Skip to main content
Log in

Development of Kinetic Parameters for Nitric Acid Leaching of Phlogopite and the Characterization of Solid Products

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

South Africa is a net importer of fertilizer products, importing all of its potassium, as well as 60–70% of its nitrogen requirements. Thus, domestic prices are impacted significantly by international prices, shipping costs, and exchange rates. Producing these fertilizers locally would be far more economical. Phlogopite, a rich source of potassium, is discarded in large quantities during mining operations; the objective of the present study, therefore, was to determine the acid-leaching characteristics and behavior of phlogopite as a means of releasing potassium. Phlogopite samples were leached with nitric acid (source of nitrogen for fertilizers) at various concentrations, temperatures, and reaction times. The feed phlogopite and leached residue samples corresponding to conversions of 14% (LP1), 44% (LP2), and 100% (LP3) were collected and analyzed using X-ray fluorescence spectroscopy (XRF), X-ray diffractometry (XRD), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Brunauer–Emmett–Teller surface area and porosity analysis (BET), thermogravimetric analysis (TGA), and field emission gun-scanning electron microscopy (FEG-SEM). The feed phlogopite was highly crystalline. The absence of defects in the lattice meant that the motion of H+ atoms penetrating into the lattice was restricted, suggesting internal diffusion-controlled leaching. Furthermore, results obtained from the various analytical techniques corroborated each other in terms of the release of cations during leaching. All leaching experiments were conducted batchwise, in a closed system. The gravimetric data from the experiments were used to identify a suitable model which predicts accurately the leaching behavior. The reaction was found to be internal diffusion-controlled, and the D1 model, which represents one-dimensional diffusion through a flat plate, predicts the leaching behavior most accurately. The observed activation energies (Ea) and pre-exponential constants (k0) varied with initial nitric acid concentration ([H+]0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the authors on reasonable request.

Code availability

Python® and Microsoft Excel® were used for calculations in this study. The codes are available from the authors upon reasonable request.

References

  • Arrhenius, S. (1889). Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren. Zeitschrift FÜr Physikalische Chemie, 4(1), 226–248.

    Article  Google Scholar 

  • Awazu, K. (1999). Oscillator strength of the infrared absorption band near 1080 cm−1 in SiO2 films. Journal of Non-Crystalline Solids, 260, 242–244.

    Article  Google Scholar 

  • Baksheev, I., Damian, F., Damian, G., Prokof’ev, V., Bryzgalov, I., & Marushchenko, L. (2016). Chemical composition of phlogopite, tourmaline and illite from hydrothermal alterations of the Nistru deposit, Baia Mare, Romania. Carpathian Journal of Earth And Environmental Sciences, 11, 547–564.

    Google Scholar 

  • Balland, C., Poszwa, A., Leyval, C., & Mustin, C. (2010). Dissolution rates of phyllosilicates as a function of bacterial metabolic diversity. Geochimica et Cosmochimica Acta, 74, 5478–5493.

    Article  Google Scholar 

  • Beran, A. (2002). Infrared spectroscopy of micas. Reviews in Mineralogy and Geochemistry, 46(1), 351–369.

    Article  Google Scholar 

  • Chute, J. H., & Quirk, J. P. (1967). Diffusion of potassium from mica-like clay minerals. Nature, 213, 1156–1157.

    Article  Google Scholar 

  • Ciullo, P. A. (1996). Mica. In Industrial Minerals and Their Uses - A Handbook and Formulary (pp. 45–48). Noyes Publication.

    Google Scholar 

  • Costa, T. M. H., Gallasa, M. R., Benvenutti, E. V., & da Jornada, J. A. H. (1997). Infrared and thermogravimetric study of high-pressure consolidation in alkoxide silica gel powders. Journal of Non-Crystalline Solids, 220, 195–201.

    Article  Google Scholar 

  • da Silva, A. D. A. S., França, S. C. A., Ronconi, C. M., Sampaio, J. A., da Luz, A. B., & de Sousa da Silva, D. (2008). A study on the application of phlogopite as a slow release potassium fertilizer. Institute of Chemistry - Federal University of Rio de Janeiro.

    Google Scholar 

  • del Rey-Perez-Caballero, F., & Poncelet, G. (2000). Preparation and characterization of microporous 18 Å Al-pillared structures from natural phlogopite micas. Microporous and Mesoporous Materials, 41, 169–181.

    Article  Google Scholar 

  • Deysel, H. M., Berluti, K., du Plessis, B. J., & Focke, W. W. (2020). Glass foams from acid-leached phlogopite waste. Journal of Materials Science, 55, 8050–8060.

    Article  Google Scholar 

  • Dockrey, J. & Mattson, B. (2016). Effects of pH on the Arrhenius paradigm. In Paul, M. (Eds.) Proceedings IMWA. Presented at the Mining Meets Water - Conflicts and Solutions (pp. 299-305), Freiberg/Germany.

  • Dybkov, V.I. (2002). Reaction Diffusion and Solid State Chemical Kinetics. Kyiv: The IPMS Publications.

  • Dye, D. W., & Hartshorn, L. (1924). The dielectric properties of mica. Proceedings of the Physical Society of London, 37, 42–57.

    Article  Google Scholar 

  • Eriksson, S.C. (1982). Aspects of the petrochemistry of the Phalaborwa complex, northeastern Transvaal, South Africa. University of the Witwatersrand, South Africa.

  • Farmer, V.C. (1974). The Infrared Spectra of Minerals. London: Mineralogical Society of Great Britain and Ireland.

  • Fogler, H. S. (2006). Rate Laws and Stoichiometry. In Elements of Chemical Reaction Engineering (pp. 91–92). Prentice-Hall.

    Google Scholar 

  • Foster, M. (1960). Interpretation of the Composition of Trioctahedral Micas. United States Department of the Interior, Washington.

  • Giletti, B. J., & Anderson, T. F. (1975). Studies in diffusion, II. Oxygen in phlogopite mica. Earth and Planetary Science Letters, 28, 225–233.

    Article  Google Scholar 

  • Härkönen, M. A., & Keiski, R. L. (1984). Porosity and surface area of acid-leached phlogopite: The effect of leaching conditions and thermal treatment. Colloids and Surfaces, 11, 323–339.

    Article  Google Scholar 

  • Heckroodt, R. O. (1991). Clay and clay materials in South Africa. Journal of the South African Institute of Mining and Metallurgy, 91, 343–363.

    Google Scholar 

  • Jenkins, D. M. (1989). Empirical study of the infrared lattice vibrations (1100-350 cm–1) of phlogopite. Physics and Chemistry of Minerals, 16, 408–414.

    Article  Google Scholar 

  • Kalinowski, B. E., & Schweda, P. (1996). Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature. Geochimica et Cosmochimica Acta, 60, 367–385.

    Article  Google Scholar 

  • Kaviratna, H., & Pinnavaia, T. J. (1994). Acid hydrolysis of octahedral Mg sites in 2:1 layered silicates: An assessment of edge attack and gallery access mechanisms. Clays and Clay Minerals, 42, 717–723.

    Article  Google Scholar 

  • Khalighi, M., & Minkkinen, P. (1989). The evaporation of potassium from phlogopite. Journal of Thermal Analysis, 35, 379–390.

    Article  Google Scholar 

  • Khawam, A., & Flanagan, D. R. (2006). Solid-state kinetic models: basics and mathematical fundamentals. The Journal of Physical Chemistry, 110, 17315–17328.

    Article  Google Scholar 

  • Khawam, A., & Flanagan, D. R. (2005). Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. The Journal of Physical Chemistry, 109, 10073–10080.

    Article  Google Scholar 

  • Kloprogge, J. T., & Frost, R. L. (1999). Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. Journal of Solid State Chemistry, 146, 506–515.

    Article  Google Scholar 

  • Kotz, J. C., Treichel, P. M., & Townsend, J. R. (2012). Chemistry and Chemical Reactivity (8th ed.). Brooks/Cole Cengage Learning.

    Google Scholar 

  • Kraevskaya, S. N., Belomestnova, É. N., & Zhuravlev, G. I. (1985). Glass crystalline materials based on phlogopite. Glass and Ceramics, 42, 396–399.

    Article  Google Scholar 

  • Kuwahara, Y., & Aoki, Y. (1995). Dissolution process of phlogopite in acid solutions. Clays and Clay Minerals, 43, 39–50.

    Article  Google Scholar 

  • Leonard, R. A., & Weed, S. B. (1970). Mica weathering rates as related to mica type and composition. Clays and Clay Minerals, 18, 187–195.

    Article  Google Scholar 

  • Levenspiel, O. (1999). Fluid-Particle Reactions: Kinetics. In Chemical Reaction Engineering (pp. 566–588). Wiley.

    Google Scholar 

  • Lin, F. C., & Clemency, C. V. (1981). Dissolution kinetics of phlogopite. I. Closed system. Clays and Clay Minerals, 29, 101–106.

    Article  Google Scholar 

  • Liong, K. K., Wells, P. A., & Foster, N. R. (1991). Diffusion in supercritical fluids. The Journal of Supercritical Fluids, 4, 91–108.

    Article  Google Scholar 

  • Madejová, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: Infrared methods. Clays and Clay Minerals, 49, 410–432.

    Article  Google Scholar 

  • Mamy, J. (1970). Extraction of interlayer K from phlogopite specific effects of cations role of Na and H concentrations in extraction solutions. Clays and Clay Minerals, 18, 157–163.

    Article  Google Scholar 

  • Mendelovici, E., Frost, R. L., & Kloprogge, J. T. (2001). Modification of chrysotile surface by organosilanes: An IR-photoacoustic spectroscopy study. Journal of Colloid and Interface Science, 238, 273–278.

    Article  Google Scholar 

  • Milliken, K. L., Rudnicki, M., Awwiller, D. N., & Zhang, T. (2013). Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania Geohorizon. AAPG Bulletin, 97(2), 177–200.

    Article  Google Scholar 

  • Mortland, M. M. (1958). Kinetics of potassium release from biotite. Soil Science Society of America, 22, 503–508.

    Article  Google Scholar 

  • Niu, H., Kinnunen, P., Sreenivasan, H., Adesanya, E., & Illikainen, M. (2020). Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential. Minerals Engineering, 151, 106331.

    Article  Google Scholar 

  • Ocaña, M., Fornés, V., & Serna, C. J. (1989). The variability of the infrared powder spectrum of amorphous SiO2. Journal of Non-Crystalline Solids, 107, 187–192.

    Article  Google Scholar 

  • Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A., & MacKenzie, K. J. D. (2006). Solid acidity of 2:1 type clay minerals activated by selective leaching. Applied Clay Science, 31, 185–193.

    Article  Google Scholar 

  • Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A., & MacKenzie, K. J. D. (2005). Preparation of porous silica from chlorite by selective acid leaching. Applied Clay Science, 30, 116–124.

    Article  Google Scholar 

  • Okada, K., Nakazawa, N., Kameshima, Y., Yasumori, A., Temuujin, J., MacKenzie, K. J. D., & Smith, M. E. (2002). Preparation and porous properties of materials prepared by selective leaching of phlogopite. Clays and Clay Minerals, 50, 624–632.

    Article  Google Scholar 

  • Perry, R. H., & Green, D. W. (1999). Perry’s Chemical Engineers’ Handbook (7th ed.). McGraw-Hill.

    Google Scholar 

  • Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). Diffusion Coefficients. In The Properties of Gases and Liquids (pp. 11.1–11.55). McGraw-Hill Professional.

    Google Scholar 

  • Porteus, M. (2018). History and Future of Phosphate Mining and Beneficiation in South Africa. In Beneficiation of phosphates VIII. Presented at the Engineering Conferences International ECI Digital Archives. South Africa: Foskor.

  • Reed, M. G., & Scott, A. D. (1962). Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions. Soil Science Society of America Journal, 26, 437–440.

    Article  Google Scholar 

  • Reguir, E., Chakhmouradian, A., Halden, N., Malkovets, V., & Yang, P. (2009). Major- and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos, 112, 372–384.

    Article  Google Scholar 

  • Rieder, M., Cavazzini, G., D’yakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval’, P. W., Müller, G., Neiva, A. M. R., Radoslovich, E. W., Robert, J.-L., Sassi, F. P., Takeda, H., Weiss, Z., & Wones, D. R. (1998). Nomenclature of the micas. Clays and Clay Minerals, 46, 586–595.

    Article  Google Scholar 

  • Ropp, R.C. (2003) Solid State Chemistry, 1st ed. New Jersey, USA: Elsevier Science B.V.

  • Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., & Unger, K. K. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66, 1739–1758.

    Article  Google Scholar 

  • Said, A., Zhang, Q., Qu, J., Liu, Y., Lei, Z., Hu, H., & Xu, Z. (2018). Mechanochemical activation of phlogopite to directly produce slow-release potassium fertilizer. Applied Clay Science, 165, 77–81.

    Article  Google Scholar 

  • Schmalzried, H. (1995). Chemical Kinetics of Solids. VCH Verlagsgesellschaft, Publishers.

  • Schoeman, J. J. (1989). Mica and vermiculite in South Africa. Journal of the Southern African Institute of Mining and Metallurgy, 89, 1–12.

    Google Scholar 

  • Taylor, A. S., Blum, J. D., Lasaga, A. C., & MacInnis, I. N. (2000). Kinetics of dissolution and Sr release during biotite and phlogopite weathering. Geochimica et Cosmochimica Acta, 64, 1191–1208.

    Article  Google Scholar 

  • Temuujin, J., Jadambaa, T. S., Burmaa, G., Erdenechimeg, S. H., Amarsanaa, J., & MacKenzie, K. J. D. (2004). Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceramics International, 30, 251–255.

    Article  Google Scholar 

  • Temuujin, J., Okada, K., & MacKenzie, K. J. D. (2003). Preparation of porous silica from vermiculite by selective leaching. Applied Clay Science, 22, 187–195.

    Article  Google Scholar 

  • Üçgül, E., & Gi̇rgi̇n, İ. (2002). Chemical exfoliation characteristics of Karakoç phlogopite in hydrogen peroxide solution. Turkish Journal of Chemistry, 26, 431–440.

    Google Scholar 

  • van Straaten, P. (2002). Rocks for Crops: Agrominerals of sub-Saharan Africa. ICRAF.

    Google Scholar 

  • Verbeek, C. J. R. (2002). Highly filled polyethylene/phlogopite composites. Materials Letters, 52, 453–457.

    Article  Google Scholar 

  • von Reichenbach, H. G. (1969). Potassium release from muscovite as influenced by particle size. Clays and Clay Minerals, 17, 23–29.

    Article  Google Scholar 

  • Wypych, F., Adad, L. B., Mattoso, N., Marangon, A. A. S., & Schreiner, W. H. (2005). Synthesis and characterization of disordered layered silica obtained by selective leaching of octahedral sheets from chrysotile and phlogopite structures. Journal of Colloid and Interface Science, 283, 107–112.

    Article  Google Scholar 

  • Xue, B., Zhang, J., Tang, X., Yang, C., Chen, Q., Man, X., & Dang, W. (2016). Micro-pore structure and gas accumulation characteristics of Shale in the Longmaxi Formation, Northwest Guizhou. Petroleum Research, 1, 191–204.

    Article  Google Scholar 

Download references

Funding

This study was privately funded under the supervision and support of Barend J. du Plessis

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barend J. du Plessis.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favel, C.M., du Plessis, B.J. Development of Kinetic Parameters for Nitric Acid Leaching of Phlogopite and the Characterization of Solid Products. Clays Clay Miner. 70, 106–119 (2022). https://doi.org/10.1007/s42860-022-00180-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-022-00180-x

Keywords

Navigation