Skip to main content
Log in

REDUCTION OF CLAY HYDRATION BY ADDITION OF AN ORGANIC STABILIZER

  • Published:
Clays and Clay Minerals

Abstract

Organic, ionic soil stabilizers (OISS) are designed to regulate directly the hydration properties of clay minerals to improve their engineering behavior. The steps involved in this regulation by OISS are unclear and this might limit their application in the current construction environment in China. The purpose of the present study was to reveal the origin of changes in hydration properties of four typical clay samples (with clay mineral contents of >90 wt.%: Na-bentonite, Ca-bentonite, illite, and kaolinite) as affected by OISS. The water-retention capacity of each clay was measured first through liquid limit and water-vapor adsorption tests. Then, the changes in hydration sites, such as exchangeable cations and the surfaces of minerals, were investigated by a series of microscopic measuring and testing techniques. Finally, infrared spectroscopy (IR) and thermal analysis were performed to verify the regulation of hydration properties by OISS. The results suggested that the exchangeable cation and surface changes controlled the regulation of hydration properties. OISS could cause some of the exchangeable cations to become free ions and disrupt the interaction between some cations and water molecules by its long organic chains; thus, the amount of hydrated cations decreased. In addition, the long organic chains covered the mineral surface and weakened its adsorption capacity. Furthermore, the long chains had cementitious qualities, connecting them to the crystalline layer and resulting in more aggregated clay particles and a smaller specific surface area (SSA). With the decrease in the number of cations and in the SSA by OISS, the hydration of the four clay samples decreased, especially in the case of bentonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  • Al-Mukhtar, M., Lasledj, A., & Alcover, J. F. (2010). Behaviour and mineralogy changes in lime-treated expansive soil at 50°C. Applied Clay Science, 50, 199–203.

    Article  Google Scholar 

  • Al-Taie, A., Disfani, M. M., Evans, R., Arulrajah, A., & Horpibulsuk, S. (2016). Swell-shrink cycles of lime stabilized expansive subgrade. Procedia Engineering, 143, 615–622.

    Article  Google Scholar 

  • Alves, J. L., Rosa, P. D. T. V. E., & Morales, A. R. (2017). Evaluation of organic modification of montmorillonite with ionic and nonionic surfactants. Applied Clay Science, 150, 23–33.

    Article  Google Scholar 

  • ASTM (2017). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. D4318-17, West Conshohocken, Pennsylvania, USA.

  • Bache, B. W. (1976). The measurement of cation exchange capacity of soils. Journal of the Science of Food and Agriculture, 27, 273–280.

    Article  Google Scholar 

  • Bray, H. J., & Redfern, S. A. T. (1999). Kinetics of dehydration of Ca-montmorillonite. Physics & Chemistry of Minerals, 26, 591–600.

    Article  Google Scholar 

  • British Standard Institution (1990). Methods of test for soils for civil engineering purposes. BS1377, London.

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  Google Scholar 

  • Caglar, B., Afsin, B., Tabak, A., & Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal, 149, 242–248.

    Article  Google Scholar 

  • Cases, J. M. (1997). Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals, 45, 8–22.

    Article  Google Scholar 

  • Cases, J. M., Berend, I., Besson, G., Francois, M., Uriot, J. P., Thomas, F., & Poirier, J. T. (1992). Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form. Langmuir, 8, 2730–2739.

    Article  Google Scholar 

  • Chen, J., Anandarajah, A., & Inyang, H. (2000). Pore fluid properties and compressibility of kaolinite. Journal of Geotechnical and Geoenvironmental Engineering, 126, 798–807.

    Article  Google Scholar 

  • Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and engineering behavior of cement treated clays. Journal of Geotechnical and Geoenvironmental Engineering, 130, 696–706.

    Article  Google Scholar 

  • Cui, D. S. (2009). Research on the reaction mechanism of adsorbed water in red clay of Wuhan with ionic soil stabilizer. PhD thesis, China University of Geosciences, China. http://new.oversea.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD0911&filename=2009153758.nh&v=MDAxMzFKcDVFYlBJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSN3FmWmVkdEZ5amtWcnpBVjEyN0Y3SzlIZGI=

  • Derjaguin, B. V., & Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim, URSS, 14, 633–662.

    Google Scholar 

  • Devineau, K., Bihannic, I., Michot, L., Villiéras, F., Masrouri, F., Cuisinier, O., Fragneto, G., & Michau, N. (2006). In situ neutron diffraction analysis of the influence of geometric confinement on crystalline swelling of montmorillonite. Applied Clay Science, 31, 76–84.

    Article  Google Scholar 

  • Dolinar, B., & Macuh, B. (2016). Determining the thickness of adsorbed water layers on the external surfaces of clay minerals based on the engineering properties of soils. Applied Clay Science, 123, 279–284.

    Article  Google Scholar 

  • Farmer, V. C. (1974). The Infrared Spectra of Minerals. Mineralogical Society.

    Book  Google Scholar 

  • Hatakeyama, T., Nakamura, K., & Hatakeyama, H. (1988). Determination of bound water content in polymers by DTA, DSC and TG. Thermochimica Acta, 123, 153–161.

    Article  Google Scholar 

  • He, S., Yu, X., Banerjee, A., & Puppala, A. J. (2018). Expansive soil treatment with liquid ionic soil stabilizer. Transportation Research Record, 2672, 185–194.

    Article  Google Scholar 

  • Ike, E. (2020). Effect of ionic concentrations and ph on the Atterberg limit of cohesive soil. Global Journal of Pure and Applied Sciences, 26, 73–85.

    Article  Google Scholar 

  • JCPDS (1995). Index to the powder diffraction file. International Center for Diffraction Data. Swarthmore, Pennsylvania, USA.

  • Katz, L. E., Rauch, A. F., Liljestrand, H. M., Harmon, J. S., Shaw, K. S., & Albers, H. (2001). Mechanisms of soil stabilization with liquid ionic stabilizer. Transportation Research Record: Journal of the Transportation Research Board, 1757, 50–57.

    Article  Google Scholar 

  • Koster van Groos, A. F., & Guggenheim, S. (1987). Dehydration of a Ca- and a Mg-exchanged montmorillonite (SWy-1) at elevated pressures. American Mineralogist, 78, 292–298.

    Google Scholar 

  • Laird, D. A. (2006). Influence of layer charge on swelling of smectites. Applied Clay Science, 34, 74–87.

    Article  Google Scholar 

  • Lang, L. Z., Xiang, W., Huang, W., & Schanz, T. (2017). An experimental study on oven-drying methods for laboratory determination of water content of a calcium-rich bentonite. Applied Clay Science, 150, 153–162.

    Article  Google Scholar 

  • Liu, L. (2013). Prediction of swelling pressures of different types of bentonite in dilute solutions. Collids and Surfaces A – Physicochenical and Engineering Aspects, 434, 303–318.

    Google Scholar 

  • Liu, Q. B., Xiang, W., Cui, D. S., & Cao, L. J. (2011). Mechanism of expansive soil improved by ionic soil stabilizer. Chinese Journal of Geotechnical Engineering, 33, 648–654.

    Google Scholar 

  • Low, P. F. (1980). The swelling of clay: II. Montmorillonites. Soil Science Society of America Journal, 44, 667–676.

    Article  Google Scholar 

  • Low, P. F. (1981). The swelling of clay: III. Dissociation of exchangeable cations. Soil Science Society of America Journal, 45, 1074–1078.

    Article  Google Scholar 

  • Low, P. F., & Margheim, J. F. (1979). The swelling of clay: I. basic concepts and empirical equations. Soil Science Society of America Journal, 43, 473–481.

    Article  Google Scholar 

  • Lu, X. S., & Xiang, W. (2011). Experimental study on dynamic characteristics of ionic soil stabilizer reinforcing red clay. In H. Li, Y. F. Liu, M. Guo, R. Zhang, & J. Du (Eds.), Advanced Materials Research. Trans Tech Publications Ltd.

    Google Scholar 

  • Maček, M., Mauko, A., Mladenovič, A., Majes, B., & Petkovšek, A. (2013). A comparison of methods used to characterize the soil specific surface area of clays. Applied Clay Science, 83-84, 144–152.

    Article  Google Scholar 

  • Madsen, F. T., & Müller-Vonmoos, M. (1989). The swelling behaviour of clays. Applied Clay Science, 4, 143–156.

    Article  Google Scholar 

  • Maio, C. D. (1996). Exposure of bentonite to salt solution: osmotic and mechanical effects. Geotechnique, 46, 695–707.

    Article  Google Scholar 

  • Miller, G. A., Teh, S. Y., Li, D., & Zaman, M. M. (2000). Cyclic shear strength of soft railroad subgrade. Journal of Geotechnical and Geoenvironmental Engineering, 126, 139–147.

    Article  Google Scholar 

  • Mishael, Y. G., & Dubin, P. L. (2005). Uptake of organic pollutants by silica−polycation-immobilized micelles for groundwater remediation. Environmental Science & Technology, 39, 8475–8480.

    Article  Google Scholar 

  • Mishael, Y. G., Undabeytia, T., Rytwo, G., Papahadjopoulos-Sternberg, B., Rubin, B., & Nir, S. (2002). Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite. Journal of Agricultural and Food Chemistry, 50, 2856–2863.

    Article  Google Scholar 

  • Mooney, R. W., Keenan, A. G., & Wood, L. A. (1952). Adsorption of water vapor by montmorillonite: II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. Journal of the American Chemical Society, 74, 1371–1374.

    Article  Google Scholar 

  • Moore, D. E., & Lockner, D. A. (2007). Friction of the smectite clay montmorillonite – a review and interpretation of data. In T. H. Dixon & J. C. Moore (Eds.), The Seismogenic Zone of Subduction Thrust Faults. Columbia University Press.

    Google Scholar 

  • Morrow, C. A., Moore, D. E., & Lockner, D. A. (2000). The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophysical Research Letters, 27, 815–818.

    Article  Google Scholar 

  • Norrish, K. (1954). The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120–134.

    Article  Google Scholar 

  • Odom, J. W., & Low, P. F. (1978). Relation between swelling, surface area and b dimension of Na-montmorillonites. Clays and Clay Minerals, 26, 345–351.

    Article  Google Scholar 

  • Petry, T., & Das, B. (2001). Evaluation of chemical modifiers and stabilizers for chemically active soils—clays. Transportation Research Record: Journal of the Transportation Research Board, 1757, 43–49.

    Article  Google Scholar 

  • Radian, A., & Mishael, Y. G. (2008). Characterizing and designing polycation-clay nanocomposites as a basis for imazapyr controlled release formulations. Environmental Science & Technology, 42, 1511–1516.

    Article  Google Scholar 

  • Ranaivomanana, H., Razakamanantsoa, A. R., & Amiri, O. (2018). Effects of cement treatment on microstructural, hydraulic, and mechanical properties of compacted soils: characterization and modeling. International Journal of Geomechanics, 18, 1–9.

    Article  Google Scholar 

  • Rauch, A., Harmon, J., Katz, L., & Liljestrand, H. M. (2002). Measured effects of liquid soil stabilizers on engineering properties of clay. Transportation Research Record: Journal of the Transportation Research Board, 1787, 33–41.

    Article  Google Scholar 

  • Razakamanantsoa, A. R., & Djeran-Maigre, I. (2016). Long term chemo-hydro-mechanical behavior of compacted soil bentonite polymer complex submitted to synthetic leachate. Waste Management, 53, 92–104.

    Article  Google Scholar 

  • Revil, A., & Lu, N. (2013). Unified water isotherms for clayey porous materials. Water Resources Research, 49, 5685–5699.

    Article  Google Scholar 

  • Salles, F., Beurrois, I., Bildstein, O., Jullien, M., Raynal, J., Denoyel, R., & van Damme, H. (2008). A calorimetric study of mesoscopic swelling and hydration sequence in solid na-montmorillonite. Applied Clay Science, 39, 186–201.

    Article  Google Scholar 

  • Salles, F., Douillard, J. M., Denoyel, R., Bildstein, O., Jullien, M., Buerrois, I., & van Damme, H. (2009). Hydration sequence of swelling clays: evolutions of specific surface area and hydration energy. Journal of Colloid and Interface Science, 333, 510–522.

    Article  Google Scholar 

  • Tuller, M., & Or, D. (2005). Water films and scaling of soil characteristic curves at low water contents. Water Resources Research, 41, 319–335.

    Article  Google Scholar 

  • van Olphen, H. (1977). An Introduction to Clay Colloid Chemistry (2nd ed.). John Wiley & Sons.

    Google Scholar 

  • Verwey, E. J. W., & Overbeek, J. T. C. (1948). Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Company.

    Google Scholar 

  • Viani, B. E., Low, P. F., & Roth, C. B. (1983). Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite. Journal of Colloid and Interface Science, 96, 229–224.

    Article  Google Scholar 

  • Viani, B. E., Roth, C. B., & Low, P. F. (1985). Direct measurement of the relation between swelling pressure and interlayer distance in Li-vermiculite. Clays and Clay Minerals, 33, 244–250.

    Article  Google Scholar 

  • Wang, R., Zhang, G., & Zhang, J. M. (2010). Centrifuge modelling of clay slope with montmorillonite weak layer under rainfall conditions. Applied Clay Science, 50, 386–394.

    Article  Google Scholar 

  • Warkentin, B. P., Bolt, G. H., & Miller, R. D. (1957). Swelling pressure of montmorillonite. Soil Science Society of America Journal, 21, 495–497.

    Article  Google Scholar 

  • Woodruff, W., & Revil, A. (2011). CEC-normalized clay-water sorption isotherm. Water Resources Research., 47, W11502.

    Article  Google Scholar 

  • Xiang, W., Cui, D. S., Liu, Q. B., Lu, X. S., & Cao, L. J. (2010). Theory and practice of ionic soil stabilizer reinforcing special clay. Journal of Earth Science, 21, 882–887.

    Article  Google Scholar 

  • Yan, L., Roth, C. B., & Low, P. F. (1996a). Changes in the Si-O vibrations of smectite layers accompanying the sorption of interlayer. Langmuir, 12, 21–4429.

    Article  Google Scholar 

  • Yan, L., Roth, C. B., & Low, P. F. (1996b). Effects of monovalent, exchangeable cations and electrolytes on the infrared vibrations of smectite layers and interlayer water. Journal of Colloid & Interface Science, 184, 663–670.

    Article  Google Scholar 

  • Yan, L., Low, P. F., & Roth, C. B. (1996c). Swelling pressure of montmorillonite layers versus H-O-H bending frequency of the interlayer water. Clays & Clay Minerals, 44, 749–756.

    Article  Google Scholar 

  • Yazdandoust, F., & Yasrobi, S. S. (2010). Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized expansive clays. Applied Clay Science, 50, 461–468.

    Article  Google Scholar 

  • Zhao, H., Ge, L., Petry, T. M., & Sun, Y. Z. (2014). Effects of chemical stabilizers on an expansive clay. KSCE Journal of Civil Engineering, 18, 1009–1017.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Sichuan Science and Technology Program (No. 2019JDRC0109), Education Reform Project of Ministry of Education (E2020040) and the National Natural Science Foundation of China (No. 41672297).

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Zhang, Y., Luo, Z. et al. REDUCTION OF CLAY HYDRATION BY ADDITION OF AN ORGANIC STABILIZER. Clays Clay Miner. 69, 489–499 (2021). https://doi.org/10.1007/s42860-021-00139-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00139-4

Keywords

Navigation