Skip to main content
Log in

Influence of Octahedral Cation Distribution in Montmorillonite on Interlayer Hydrogen Counter-Ion Retention Strength via First-Principles Calculations

  • Published:
Clays and Clay Minerals

A Correction to this article was published on 01 October 2019

This article has been updated

Abstract

Although multiple types of adsorption sites have long been observed in montmorillonite, a consistent explanation about the chemical structure of these adsorption sites has not yet been established. Identifying the cation interlayer adsorption sites based on the octahedral cation distribution on montmorillonite was investigated in this study by using a Density Functional Theory (DFT) simulation. A clay structural model (H[Al6MgFe]Si16O40(OH)8) with a similar composition to Wyoming SWy-1 montmorillonite was built, where two octahedral Al were respectively substituted by Fe and Mg, and H+ was the charge compensating cation. This model had twenty-one different possible configurations as a function of the distribution of octahedral Al, Fe, and Mg cations. The DFT simulations of 15 of these different configurations showed no preference for the formation of any configuration with a specific octahedral Fe-Mg distance. However, the H+ adsorption energy was separated into three distinct groups based on the number of octahedral jumps from Fe to Mg atoms. The H+ adsorption energy significantly decreased with increasing number of octahedral jumps from Fe to Mg. Assuming an even probability of occurrence of 21 octahedral structures in montmorillonite, the percentages of these three groups are 43, 43, and 14%, respectively, which are very close to the three major sites on montmorillonite from published cation adsorption data. These DFT simulations offer an entirely new explanation for the location and chemical structure of the three major adsorption sites on montmorillonite, namely, all three sites are in the interlayer, and their adsorption strengths are a function of the number of octahedral jumps from Fe to Mg atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Change history

  • 20 February 2020

    This article was updated to correct changes to the text made during production. The phrase “Fe can be placed in one of three ways at <Emphasis Type="Italic">j</Emphasis> = 1 and 2” was updated.

References

  • Agmon, N. (1999). Proton solvation and proton mobility. Israel Journal of Chemistry, 39, 493–502.

    Google Scholar 

  • Benson, L. V. (1982). A tabulation and evaluation of ion exchange data on smectites. Environmental Geology, 4, 23–29.

    Google Scholar 

  • Blöchl, P. E. (1994). Projector augmented-wave method. Physical review B, 50, 17953–17979.

    Google Scholar 

  • Bradbury, M. H., & Baeyens, B. (1997). A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part II: Modelling. Journal of Contaminant Hydrology, 27, 223–248.

    Google Scholar 

  • Carey, F.A., & Sundberg, R.J. (2007). Advanced organic chemistry. Part A: Structure and mechanisms. Springer Science & Business Media.

  • Chatterjee, A., Iwasaki, T., Ebina, T., & Miyamoto, A. (1999). A DFT study on clay-cation-water interaction in montmorillonite and beidellite. Computational Materials Science, 14, 119–124.

    Google Scholar 

  • Cornell, R. (1993). Adsorption of cesium on minerals: A review. Journal of Radioanalytical and Nuclear Chemistry, 171, 483–500.

    Google Scholar 

  • Cuadros, J., Sainz-Diaz, C. I., Ramirez, R., & Hernandez-Laguna, A. (1999). Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of FTIR, 27Al MAS NMR and reverse Monte Carlo simulations. American Journal of Science, 299, 289–308.

    Google Scholar 

  • Drits, V. A., McCarty, D. K., & Zviagina, B. B. (2006). Crystal-chemical factors responsible for the distribution of octahedral cations over trans- and cis-sites in dioctahedral 2:1 layer silicates. Clays and Clay Minerals, 54, 131–152.

    Google Scholar 

  • Dzene, L., Tertre, E., Hubert, F., & Ferrage, E. (2015). Nature of the sites involved in the process of cesium desorption from vermiculite. Journal of Colloid and Interface Science, 455, 254–260.

    Google Scholar 

  • Emmerich, K., & Kahr, G. (2001). The cis-and trans-vacant variety of a montmorillonite: an attempt to create a model smectite. Applied Clay Science, 20, 119–127.

    Google Scholar 

  • Escamilla-Roa, E., Nieto, F., & Sainz-Díaz, C. I. (2016). Stability of the hydronium cation in the structure of illite. Clays and Clay Minerals, 64, 413–424.

    Google Scholar 

  • Ferreira, D. R., Schulthess, C. P., & Giotto, M. V. (2011). An investigation of strong sodium retention mechanisms in nanopore environments using nuclear magnetic resonance spectroscopy. Environmental Science and Technology, 46, 300–306.

    Google Scholar 

  • Finck, N., Schlegel, M. L., & Bauer, A. (2015). Structural iron in dioctahedral and trioctahedral smectites: A polarized XAS study. Physics and Chemistry of Minerals, 42, 847–859.

    Google Scholar 

  • Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., & Bechstedt, F. (2006). Linear optical properties in the projector-augmented wave methodology. Physical Review B, 73, (045112), 1–9.

    Google Scholar 

  • Hernández-Laguna, A., Escamilla-Roa, E., Timón, V., Dove, M. T., & Sainz-Díaz, C. I. (2006). DFT study of the cation arrangements in the octahedral and tetrahedral sheets of dioctahedral 2:1 phyllosilicates. Physics and Chemistry of Minerals, 33, 655–666.

    Google Scholar 

  • Hernández-Haro, N., Ortega-Castro, J., Pruneda, M., Sainz-Díaz, C. I., & Hernández-Laguna, A. (2014). Theoretical study on the influence of the Mg2+ and Al3+ octahedral cations on the vibrational spectra of the hydroxy groups of dioctahedral 2:1 phyllosilicate models. Journal of Molecular Modeling, 20, (2402), 1–10.

    Google Scholar 

  • Jacquier, P., Ly, J., & Beaucaire, C. (2004). The ion-exchange properties of the Tournemire argillite: I. Study of the H, Na, K, Cs, Ca and Mg behaviour. Applied Clay Science, 26, 163–170.

    Google Scholar 

  • Kaufhold, S., Kremleva, A., Krüger, S., Rösch, N., Emmerich, K., & Dohrmann, R. (2017). Crystal-chemical composition of dicoctahedral smectites: An energy-based assessment of empirical relations. ACS Earth and Space Chemistry, 1, 629–636.

    Google Scholar 

  • Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169–11186.

    Google Scholar 

  • Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758–1775.

    Google Scholar 

  • Lantenois, S., Muller, F., Bény, J. M., Mahiaoui, J., & Champallier, R. (2008). Hydrothermal synthesis of beidellites: Characterization and study of the cis-and trans-vacant character. Clays and Clay Minerals, 56, 39–48.

    Google Scholar 

  • Lavikainen, L. P., Tanskanen, J. T., Schatz, T., Kasa, S., & Pakkanen, T. A. (2015). Montmorillonite interlayer surface chemistry: Effect of magnesium ion substitution on cation adsorption. Theoretical Chemistry Accounts, 134, (51), 1–7.

    Google Scholar 

  • Macht, F., Eusterhues, K., Pronk, G. J., & Totsche, K. U. (2011). Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and-liquid (EGME) adsorption methods. Applied Clay Science, 53, 20–26.

    Google Scholar 

  • Martin, L. A., Wissocq, A., Benedetti, M. F., & Latrille, C. (2018). Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochimica et Cosmochimica Acta, 230, 1–16.

    Google Scholar 

  • McKinley, J. P., Zachara, J. M., Smith, S. C., & Turner, G. D. (1995). The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montmorillonite. Clays and Clay Minerals, 43, 586–598.

    Google Scholar 

  • Missana, T., Benedicto, A., García-Gutiérrez, M., & Alonso, U. (2014). Modeling cesium retention onto Na-, K- and Ca-smectite: Effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients. Geochimica et Cosmochimica Acta, 128, 266–277.

    Google Scholar 

  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188–5192.

    Google Scholar 

  • Motellier, S., Ly, J., Gorgeon, L., Charles, Y., Hainos, D., Meier, P., & Page, J. (2003). Modelling of the ion-exchange properties and indirect determination of the interstitial water composition of an argillaceous rock. Application to the Callovo-Oxfordian low-water-content formation. Applied Geochemistry, 18, 1517–1530.

    Google Scholar 

  • Muller, F., Besson, G., Manceau, A., & Drits, V. A. (1997). Distribution of isomorphous cations within octahedral sheets in montmorillonite from Camp-Bertaux. Physics and Chemistry of Minerals, 24, 159–166.

    Google Scholar 

  • Muller, F., Drits, V., Plançon, A., & Robert, J. L. (2000). Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions. Clays and Clay Minerals, 48, 572–585.

    Google Scholar 

  • Neumann, A., Petit, S., & Hofstetter, T. B. (2011). Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy. Geochimica et Cosmochimica Acta, 75, 2336–2355.

    Google Scholar 

  • Nolin, D. (1997). Rétention de radioéléments à vie longue par des matériaux argileux. Influence d’anions contenus dans les eaux naturelles. Ph.D. Thesis, Universite Pierre Et Marie Curie, Paris 6.

  • Norrish, K. (1954). The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120–134.

    Google Scholar 

  • Ohkubo, T., Okamoto, T., Kawamura, K., Guégan, R., Deguchi, K., Ohki, S., Shimizu, T., Tachi, Y., & Iwadate, Y. (2018). New insights into the Cs adsorption on montmorillonite clay from 133Cs solid-state NMR and density functional theory calculations. The Journal of Physical Chemistry A, 122, 9326–9337.

    Google Scholar 

  • Ortega-Castro, J., Hernández-Haro, N., Dove, M. T., Hernández-Laguna, A., & Sainz-Díaz, C. I. (2010). Density functional theory and Monte Carlo study of octahedral cation ordering of Al/Fe/Mg cations in dioctahedral 2:1 phyllosilicates. American Mineralogist, 95, 209–220.

    Google Scholar 

  • Pauling, L. (1960). The Nature of the chemical bond. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.

    Google Scholar 

  • Poinssot, C., Baeyens, B., & Bradbury, M. H. (1999). Experimental and modelling studies of caesium sorption on illite. Geochimica et Cosmochimica Acta, 63, 3217–3227.

    Google Scholar 

  • Robin, V., Tertre, E., Beaufort, D., Regnault, O., Sardini, P., & Descostes, M. (2015). Ion exchange reactions of major inorganic cations (H+, Na+, Ca2+, Mg2+ and K+) on beidellite: Experimental results and new thermodynamic database. Toward a better prediction of contaminant mobility in natural environments. Applied Geochemistry, 59, 74–84.

    Google Scholar 

  • Robin, V., Tertre, E., Beaucaire, C., Regnault, O., & Descostes, M. (2017). Experimental data and assessment of predictive modeling for radium ion-exchange on beidellite, a swelling clay mineral with a tetrahedral charge. Applied Geochemistry, 85, 1–9.

    Google Scholar 

  • Rotenberg, B., Morel, J. P., Marry, V., Turq, P., & Morel-Desrosiers, N. (2009). On the driving force of cation exchange in clays: Insights from combined microcalorimetry experiments and molecular simulation. Geochimica et Cosmochimica Acta, 73, 4034–4044.

    Google Scholar 

  • Sainz-Diaz, C. I., Hernández-Laguna, A., & Dove, M. T. (2001). Theoretical modelling of cis-vacant and trans-vacant configurations in the octahedral sheet of illites and smectites. Physics and Chemistry of Minerals, 28, 322–331.

    Google Scholar 

  • Sawhney, B. (1972). Selective sorption and fixation of cations by clay minerals: A review. Clays and Clay Minerals, 20, 93–100.

    Google Scholar 

  • Schulthess, C. P., & Huang, C. P. (1990). Adsorption of heavy metals by silicon and aluminum oxide surfaces on clay minerals. Soil Science Society of America Journal, 54, 679–688.

    Google Scholar 

  • Schulthess, C. P., Taylor, R. W., & Ferreira, D. R. (2011). The nanopore inner sphere enhancement effect on cation adsorption: Sodium and nickel. Soil Science Society of America Journal, 75, 378–388.

    Google Scholar 

  • Siroux, B., Beaucaire, C., Tabarant, M., Benedetti, M. F., & Reiller, P. E. (2017). Adsorption of strontium and caesium onto an Na-MX80 bentonite: Experiments and building of a coherent thermodynamic modelling. Applied Geochemistry, 87, 167–175.

    Google Scholar 

  • Shi, J., Liu, H., Lou, Z., Zhang, Y., Meng, Y., Zeng, Q., & Yang, M. (2013). Effect of interlayer counterions on the structures of dry montmorillonites with Si4+/Al3+ substitution. Computational Materials Science, 69, 95–99.

    Google Scholar 

  • Sposito, G. (2008). The chemistry of soils. Oxford University Press.

  • Teppen, B. J., & Miller, D. M. (2006). Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Science Society of America Journal, 70, 31–40.

    Google Scholar 

  • Tertre, E., Beaucaire, C., Coreau, N., & Juery, A. (2009). Modelling Zn (II) sorption onto clayey sediments using a multi-site ion-exchange model. Applied Geochemistry, 24, 1852–1861.

    Google Scholar 

  • The Clay Minerals Society (2019). Physical and chemical data of source clays, http://www.clays.org/sourceclays_data.html, viewed 7 June 2019.

  • Tournassat, C., Neaman, A., Villiéras, F., Bosbach, D., & Charlet, L. (2003). Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations. American Mineralogist, 88, 1989–1995.

    Google Scholar 

  • Tsipursky, S. I., & Drits, V. A. (1984). The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177–193.

    Google Scholar 

  • Tunega, D., Goodman, B. A., Haberhauer, G., Reichenauer, T. G., Gerzabek, M. H., & Lischka, H. (2007). Ab initio calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates. Clays and Clay minerals, 55, 220–232.

    Google Scholar 

  • Vantelon, D., Montarges-Pelletier, E., Michot, L. J., Pelletier, M., Thomas, F., & Briois, V. (2003). Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study. Physics and Chemistry of Minerals, 30, 44–53.

    Google Scholar 

  • Viani, A., Gualtieri, A. F., & Artioli, G. (2002). The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 87, 966–975.

    Google Scholar 

  • Wolters, F., Lagaly, G., Kahr, G., Nueeshch, R., & Emmerich, K. (2009). A comprehensive characterization of dioctahedral smectites. Clays and Clay Minerals, 57, 115–133.

    Google Scholar 

  • Yariv, S. (1992). The effect of tetrahedral substitution of Si by Al on the surface acidity of the oxygen plane of clay minerals. International Reviews in Physical Chemistry, 11, 345–375.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the USDA National Institute of Food and Agriculture, Hatch project accession number 1013470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yayu W. Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.W., Schulthess, C.P., Co, K. et al. Influence of Octahedral Cation Distribution in Montmorillonite on Interlayer Hydrogen Counter-Ion Retention Strength via First-Principles Calculations. Clays Clay Miner. 67, 439–448 (2019). https://doi.org/10.1007/s42860-019-00038-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-019-00038-9

Keywords

Navigation