Skip to main content
Log in

Single-Feedback Based Inverter-Current-Controlled LCL-Type Grid-Connected Inverters with Capacitor-Current Active Damping: Robust Design and Single-Feedback Implementation

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

The dual-feedback control combining inverter current control and capacitor-current active damping is widely applied for LCL-type grid-connected inverters. This paper investigates the operation cases of this dual-feedback control, paving a path for a robust design. Theoretical analysis is presented to provide a design guideline. A robust damping gain is derived which can ensure robustness against the grid inductance variation. However, it is found that this property is subjected to both filter parameter fluctuations and the lagging phase of the current regulator. To address these issues, extra phase-lead compensation is suggested to be embedded with the current regulator. On top of these, a robust single-feedback inverter current control is developed, where the capacitor current is extracted from the sensed inverter current for active damping, and the proportional-integral-resonant current regulator is used for avoiding the dc bias. The proposed strategy combines high robustness and cost-efficiency. Experimental results from a 6-kW prototype are finally provided to confirm the theoretical analysis and expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Blaabjerg F, Yang Y, Yang D, Wang X (2017) Distributed power-generation systems and protection. Proc IEEE 105(7):1311–1331

    Article  Google Scholar 

  2. Peng Q, Jiang Q, Yang Y, Liu T, Wang H, Blaabjerg F (2019) On the stability of power electronics-dominated systems: challenges and potential solutions. IEEE Trans Ind Appl 55(6):7657–7670

    Article  Google Scholar 

  3. Le J, Zhao L, Liao X, Zhou Q, Liang H (2021) Stability analysis of grid-connected inverter system containing virtual synchronous generator under time delay and parameter uncertainty. J Electr Eng Technol 16(4):1779–1792

    Article  Google Scholar 

  4. Rocabert J, Luna A, Blaabjerg F, Rodríguez P (2012) Control of power converters in AC microgrids. IEEE Trans Power Electron 27(11):4734–4749

    Article  Google Scholar 

  5. Dragičević T, Vazquez S, Wheeler P (2021) Advanced control methods for power converters in DG systems and microgrids. IEEE Trans Ind Electron 68(7):5847–5862

    Article  Google Scholar 

  6. Zou C, Rao H, Xu S, Li Y, Li W, Chen J, Zhao X, Yang Y, Lei B (2018) Analysis of resonance between a VSC-HVDC converter and the AC grid. IEEE Trans Power Electron 33(12):10157–10168

    Article  Google Scholar 

  7. Wang X, Blaabjerg F (2019) Harmonic stability in power electronic- based power systems: concept, modeling, and analysis. IEEE Trans Smart Grid 10(3):2858–2870

    Article  Google Scholar 

  8. He J, Li YW (2012) Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters. IEEE Trans Power Electron 27(4):1850–1861

    Article  Google Scholar 

  9. Zhao J, Li K, Wang X et al (2021) A novel passivity-based resonant instability suppression method for grid-connected VSC. J Electr Eng Technol 16:321–331

    Article  Google Scholar 

  10. Faiz MT, Khan D, Khan MM, Ali A, Tang H (2021) Improved stability and damping characteristics of LCL-filter based distributed generation system. J Electr Eng Technol 16:1619–1635

    Article  Google Scholar 

  11. Pan D, Ruan X, Bao C, Li W, Wang X (2015) Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation. IEEE Trans Ind Electron 62(3):1537–1547

    Article  Google Scholar 

  12. Wang X, Blaabjerg F, Loh PC (2015) Virtual RC damping of LCL-filtered voltage source converters with extended selective harmonic compensation. IEEE Trans Power Electron 30(9):4726–4737

    Article  Google Scholar 

  13. Liu T, Liu J, Liu Z, Liu Z (2020) A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters. IEEE Trans Power Electron 35(1):247–262

    Article  Google Scholar 

  14. He Y, Wang X, Ruan X, Pan D, Qin K (2021) Hybrid active damping combining capacitor current feedback and point of common coupling voltage feedforward for LCL-type grid-connected inverter. IEEE Trans Power Electron 36(2):2373–2383

    Article  Google Scholar 

  15. Dannehl J, Fuchs FW, Thøgersen PB (2010) PI state space current control of grid-connected PWM converters with LCL filters. IEEE Trans Power Electron 25(9):2320–2330

    Article  Google Scholar 

  16. Wang X, Blaabjerg F, Loh PC (2017) Passivity-based stability analysis and damping injection for multi paralleled VSCs with LCL filters. IEEE Trans Power Electron 32(11):8922–8935

    Article  Google Scholar 

  17. Xin Z, Mattavelli P, Yao W, Yang Y, Blaabjerg F, Loh PC (2018) Mitigation of grid-current distortion for LCL-filtered voltage-source inverter with inverter-current feedback control. IEEE Trans Power Electron 33(7):6248–6261

    Article  Google Scholar 

  18. Dannehl J, Fuchs FW, Hansen S, Thøgersen PB (2010) Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters. IEEE Trans Ind Appl 46(4):1509–1517

    Article  Google Scholar 

  19. Wang X, Li YW, Blaabjerg F, Loh PC (2015) Virtual-impedance- based control for voltage-source and current-source converters. IEEE Trans Power Electron 30(12):7019–7037

    Article  Google Scholar 

  20. Pan D, Ruan X, Wang X, Yu H, Xing Z (2017) Analysis and design of current control schemes for LCL-type grid-connected inverter based on a general mathematical model. IEEE Trans Power Electron 32(6):4395–4410

    Article  Google Scholar 

  21. Xie C, Li K, Zou J, Guerrero JM (2020) Passivity-based stabilization of LCL-type grid-connected inverters via a general admittance model. IEEE Trans Power Electron 35(6):6636–6648

    Article  Google Scholar 

  22. Cai Y, He Y, Zhou H, Liu J (2020) Active damping disturbance rejection control strategy of LCL grid-connected inverter based on inverter-side current feedback. IEEE J Emerg Sel Topics Power Electron 9(6):7183–7198

    Article  Google Scholar 

  23. Harnefors L, Yepes AG, Vidal A, Doval-Gandoy J (2015) Passivity-based controller design of grid-connected VSCs for prevention of electrical resonance instability. IEEE Trans Ind Electron 62(2):702–710

    Article  Google Scholar 

  24. Miskovic V, Blasko V, Jahns TM, Smith AHC, Romenesko C (2014) Observer-based active damping of LCL resonance in grid-connected voltage source converters. IEEE Trans Ind Appl 50(6):3977–3985

    Article  Google Scholar 

  25. Awal MA, Flora LD, Husain I (2022) Observer based generalized active damping for voltage source converters with LCL filters. IEEE Trans Power Electron 37(1):125–136

    Article  Google Scholar 

  26. Zhao J, Xie C, Li K, Zou J, Guerrero JM (2021) Passivity-oriented design of LCL-type grid-connected inverters with Luenberger observer-based active damping. IEEE Trans Power Electron 37(3):2625–2635

    Article  Google Scholar 

  27. Tang Y, Loh PC, Wang P, Choo FH, Gao F (2012) Exploring inherent damping characteristic of LCL-filters for three-phase grid- connected voltage source inverters. IEEE Trans Power Electron 27(3):1433–1443

    Article  Google Scholar 

  28. Zhou L, Zhou X, Chen Y, Lv Z, He Z, Wu W, Yang L, Yan K, Luo A, Guerrero JM (2018) Inverter-current-feedback resonance-suppression method for LCL-type DG system to reduce resonance-frequency offset and grid-inductance effect. IEEE Trans Ind Electron 65(9):7036–7048

    Article  Google Scholar 

  29. Buso S, Mattavelli P (2015) Digital control in power electronics, 2nd edn. Morgan & Claypool, San Rafael, CA, USA

    Book  Google Scholar 

  30. Liserre M, Teodorescu R, Blaabjerg F (2006) Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans Power Electron 21(1):263–272

    Article  Google Scholar 

  31. Holmes DG, Lipo TA, McGrath BP, Kong WY (2009) Optimized design of stationary frame three phase AC current regulators. IEEE Trans Power Electron 24(11):2417–2426

    Article  Google Scholar 

  32. Yepes AG, Vidal A, Malvar J, Lopez O, Gandoy JD (2014) Tuning method aimed at optimized settling time and overshoot for synchronous proportional-integral current control in electric machines. IEEE Trans Power Electron 29(6):3041–3054

    Article  Google Scholar 

  33. Harnefors L, Wang X, Yepes AG, Blaabjerg F (2016) Passivity-based stability assessment of grid-connected VSCs—an overview. IEEE J Emerg Sel Topics Power Electron 4(1):116–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yi.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Yi, H., Xu, J. et al. Single-Feedback Based Inverter-Current-Controlled LCL-Type Grid-Connected Inverters with Capacitor-Current Active Damping: Robust Design and Single-Feedback Implementation. J. Electr. Eng. Technol. (2024). https://doi.org/10.1007/s42835-024-01914-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42835-024-01914-8

Keywords

Navigation