Skip to main content
Log in

Operation of Energy and Regulation Reserve Markets in the presence of Virtual Power Plant Including Storage System and Distributed Generation based on Unit Commitment Model

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

The operation model of a virtual power plant (VPP) that includes synchronous distributed generating units, combined heat and power unit, renewable sources, small pumped and thermal storage elements, and electric vehicles is described in the present research. The VPPs are involved in the day-ahead energy and regulation reserve market so that escalate their profit by selling their generated power. This is formulated as an optimization problem with maximization of VPPs profit subject to constraints of the VPP’s sources and storage, and VPP flexibility limits. Also, uncertain nature of renewables output power, prices of the markets, electric vehicles parameters, and reserve parameters are taken into account. Then, uncertain parameters are properly modeled by incorporating the Unscented transformation (UT)-based stochastic optimization, and GAMS software is adopted to test the efficacy of the presented approach so that the VPP’s operation and economic situation is suitably improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

l :

Piecewise linearization index

h :

Hour index

v :

Electric vehicle (EV) index

w :

Scenario

\(w{\prime}\) :

Scenario

φ l :

The set of linearization pieces

φ h :

The set of hours

φ v :

The set of EVs

φ w :

The set of scenario

I SDG :

The variable of the presence of SDG

J SDG :

The variable of startup of SDG

L SDG :

The variable of the shutdown of SDG

I PSP :

The variable of the status of SPS

I ch :

The variable of charging status of EVs

I dch :

The variable of discharging status of EVs

I ST :

The variable of the status of TS

R :

Revenue in $

C :

Cost in $

P SDG :

Power of SDG in per-unit (p.u.)

RR SDG :

Regulation reserve of SDG in p.u.

E PSP :

Energy of SPS in p.u.

P pum :

Charging power of SPS in p.u.

P tur :

Discharging power of SPS in p.u.

RR PSP :

Regulation reserve of SPS in p.u.

E EV :

Energy of EV in p.u.

P ch :

Charging power of EV in p.u.

P dch :

Discharging power of EV in p.u.

RR EV :

Regulation reserve of EV in p.u.

P CHP,e :

Electrical power of CHP in p.u.

P CHP,t :

Thermal power of CHP in p.u.

E ST :

Energy of TS in p.u.

P ch,t :

Charging power of TS in p.u.

P dch,t :

Discharging power of TS in p.u.

P DA,e :

Electrical power of day-ahead market in p.u.

P DA,t :

Thermal power of day-ahead market in p.u.

RR DA :

Regulation reserve of day-ahead market in p.u

a, b, c :

Cost coefficients of SDG in $/h, $/MWh, $/MWh2, respectively

SUC :

Startup cost in $

SDC :

Shutdown cost in $

CO2 SDG :

Carbon dioxide pollution of SDG in kg

CO2 cap :

Allowable carbon dioxide pollution in kg

λ co2 :

Penalty cost of carbon dioxide pollution in $/kg

P max :

Maximum power in p.u.

P min :

Minimum power in p.u.

RDN p :

Ramp up rate in p.u.

RUP p :

Ramp down rate in p.u.

H on :

Maximum switched on time of SDG in hour

H off :

Minimum shutdown time of SDG in hour

λ pum :

The charging price of the SPS in $/MWh

η :

Efficiency in %

E max :

Maximum stored energy in p.u.

E min :

Minimum stored energy in p.u.

λ CHP :

Power price of CHP in $/MWh

K chp :

Coefficient of the ratio between thermal and electrical sectors in CHP

λ ST :

The price of power of TS in $/MWh

λ E :

The price of electric energy in the day-ahead market in $/MWh

λ T :

The price of thermal energy in the day-ahead market in $/MWh

λ spot :

Spot market price $/MWh

π :

Probability of scenario

Δ F :

Flexibility tolerance in p.u

References

  1. Mashhour E, Moghaddas-Tafreshi SM (2011) Bidding strategy of virtual power plant for participating in energy and spinning reserve markets – part I: problem formulation. IEEE Trans Power Syst 26(2):949–956

    Google Scholar 

  2. E Mashhour, SM Moghaddas-Tafreshi, (2009) A review on operation of micro grids and virtual power plants in the power markets. In: 2nd International Conference on Adaptive Science & Technology, p. 273–277

  3. D Pudjianto, C Ramsay, G Strbac, M Durstewitz M, (208) The virtual power plant: enabling integration of distributed generation and demand,” FENIX Bulletin, pp. 1–8.

  4. Pudjianto D, Ramsay C, Strbac G, G, (2007) Virtual power plant and system integration of distributed energy resources. Renew Power Gener, IET 1(1):10–16

    Google Scholar 

  5. Liu H, Qiu J, Zhao J (2022) A data-driven scheduling model of virtual power plant using Wasserstein distributionally robust optimization. Int J Electr Power Energy Syst 137:107801

    Google Scholar 

  6. Li Y, Deng Y, Wang Y, Jiang L, Shahidehpour M (2023) Robust bidding strategy for multi-energy virtual power plant in peak-regulation ancillary service market considering uncertainties. Int J Electr Power Energy Syst 151:109101

    Google Scholar 

  7. Wang Y, Xu C, Xie D, Gu C, Zhao P, Gong J, Pan M, Wang X (2023) A novel scheduling strategy for virtual power plant based on power market dynamic triggers. Appl Energy 350:121758

    Google Scholar 

  8. Lin X, Lin X, Zhong W, Zhou Y (2023) Predictive operation optimization of multi-energy virtual power plant considering behavior uncertainty of diverse stakeholders. Energy 280:128130

    Google Scholar 

  9. Pandey AK, Jadoun VK, Jayalakshmi NS (2023) Real-time and day-ahead risk averse multi-objective operational scheduling of virtual power plant using modified Harris Hawk’s optimization. Electric Power Syst Res 220:109285

    Google Scholar 

  10. Wang H, Jia Y, Lai CS, Li K (2022) Optimal virtual power plant operational regime under reserve uncertainty. IEEE Trans on Smart Grid 13(4):2973–2985

    Google Scholar 

  11. Chang W, Dong W, Wang Y, Yang Q (2022) Two-stage coordinated operation framework for virtual power plant with aggregated multi-stakeholder microgrids in a deregulated electricity market. Renew Energy 199:943–956

    Google Scholar 

  12. Gough M et al (2022) Operation of a technical virtual power plant considering diverse distributed energy resources. IEEE Trans Indust Appl 58(2):2547–2558

    Google Scholar 

  13. Ryu J, Kim J (2022) Virtual power plant operation strategy under uncertainty with demand response resources in electricity markets. IEEE Access 10:62763–62771

    Google Scholar 

  14. Zhang Y, Yuan F, Zhai H, Song C, Poursoleiman R (2023) Optimizing the planning of distributed generation resources and storages in the virtual power plant, considering load uncertainty. J Clean Prod 387:135868

    Google Scholar 

  15. Kaur J, Sood YR, Shrivastava R (2022) Optimal resource utilization in a multi-microgrid network for Tamil Nadu state in India. IETE J Res 68(1):183–193

    Google Scholar 

  16. Verma A, Prakash S, Kumar A (2023) AI-based building management and information system with multi-agent topology for an energy-efficient building: towards occupants comfort. IETE J Res 69(2):1033–1044

    Google Scholar 

  17. Faazila Fathima S, Premalatha L (2021) Protection strategies for ac and dc microgrid–A review of protection methods adopted in recent decade. IETE J Res. https://doi.org/10.1080/03772063.2021.1990140

    Article  Google Scholar 

  18. Choudhury S, Khandelwal N (2023) A novel weighted superposition attraction algorithm-based optimization approach for state of charge and power management of an islanded system with battery and supercapacitor-based hybrid energy storage system. IETE J Res 69(2):825–838

    Google Scholar 

  19. Bhargavi KM, Jayalakshmi NS (2022) Kalman filter-based DC bus voltage control for autonomous DC microgrid system with PV. IETE J Res, Wind and EVs Integration. https://doi.org/10.1080/03772063.2022.2089744

    Book  Google Scholar 

  20. Raeisihasanhendoei G, Fotouhi R, Naseri M, Pourgholi M (2023) A novel flexible method for optimal operation modeling of multi-carrier energy systems. IETE J Res. https://doi.org/10.1080/03772063.2023.2175048

    Article  Google Scholar 

  21. Min C, Pan Y, Dai W, Kawsar I, Li Z, Wang G (2023) Trajectory optimization of an electric vehicle with minimum energy consumption using inverse dynamics model and servo constraints. Mech Mach Theory 181:105185. https://doi.org/10.1016/j.mechmachtheory.2022.105185

    Article  Google Scholar 

  22. Cao B, Zhang W, Wang X, Zhao J, Gu Y, Zhang Y (2021) A memetic algorithm based on two Arch2 for multi-depot heterogeneous-vehicle capacitated arc routing problem. Swarm Evol Comput 63:100864

    Google Scholar 

  23. Soykan G, Er G, Canakoglu E (2022) Optimal sizing of an isolated microgrid with electric vehicles using stochastic programming. Sustain Energy, Grids Netw 32:100850

    Google Scholar 

  24. Geng K, Dong G, Huang W (2022) Robust dual-modal image quality assessment aware deep learning network for traffic targets detection of autonomous vehicles. Multimed Tools Appl 81(5):6801–6826

    Google Scholar 

  25. Faraj J, Chahine K, Mortada M, Lemenand T, Ramadan HS, Khaled M (2022) Eco-efficient vehicle cooling modules with integrated diffusers—thermal, energy, and environmental analyses. Energies 15(21):7917

    Google Scholar 

  26. Huang S, Huang M, Lyu Y (2021) Seismic performance analysis of a wind turbine with a monopile foundation affected by sea ice based on a simple numerical method. Eng Appl Comput Fluid Mech 15(1):1113–1133. https://doi.org/10.1080/19942060.2021.1939790

    Article  Google Scholar 

  27. Zhang W, Zheng Z, Liu H (2022) Droop control method to achieve maximum power output of photovoltaic for parallel inverter system. CSEE J Power Energy Syst 8(6):1636–1645. https://doi.org/10.17775/CSEEJPES.2020.05070

    Article  Google Scholar 

  28. Sun S, Liu Y, Li Q, Wang T, Chu F (2023) Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks. Energy Convers Manage 283:116916. https://doi.org/10.1016/j.enconman.2023.116916

    Article  Google Scholar 

  29. Li M, Yang M, Yu Y, Lee W (2021) A wind speed correction method based on modified hidden Markov model for enhancing wind power forecast. IEEE Trans Ind Appl 58(1):656–666. https://doi.org/10.1109/TIA.2021.3127145

    Article  Google Scholar 

  30. Ma X, Wan Y, Wang Y, Dong X, Shi S, Liang J, Zhao Y, Mi H (2023) Multi-parameter practical stability region analysis of wind power system based on limit cycle amplitude tracing. IEEE Trans Energy Convers. https://doi.org/10.1109/TEC.2023.3274775

    Article  Google Scholar 

  31. Zhang Z, Altalbawy FMA, Al-Bahrani M, Riadi Y (2023) Regret-based multi-objective optimization of carbon capture facility in CHP-based microgrid with carbon dioxide cycling. J Clean Prod 384:135632. https://doi.org/10.1016/j.jclepro.2022.135632

    Article  Google Scholar 

  32. Chen H, Wu H, Kan T, Zhang J, Li H (2023) Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction. Int J Electr Power Energy Syst 154:109420. https://doi.org/10.1016/j.ijepes.2023.109420

    Article  Google Scholar 

  33. Zhu D, Guo X, Tang B, Hu J, Zou X, Kang Y (2023) Feedforward frequency deviation control in PLL for fast inertial response of DFIG-Based Wind turbines. IEEE Trans Power Electron. https://doi.org/10.1109/TPEL.2023.3319134

    Article  Google Scholar 

  34. Liu K, Sheng W, Li Z, Liu F, Liu Q, Huang Y, Li Y (2023) An energy optimal schedule method for distribution network considering the access of distributed generation and energy storage. IET Gener Transm Distrib 17(3):2996–3015. https://doi.org/10.1049/gtd2.12855

    Article  Google Scholar 

  35. Liao K, Lu D, Wang M, Yang J (2022) A low-pass virtual filter for output power smoothing of wind energy conversion systems. IEEE Trans Industr Electron 69(12):12874–12885. https://doi.org/10.1109/TIE.2021.3139177

    Article  Google Scholar 

  36. Liang J, Kato B, Wang Y (2023) Constructing simplified models for dynamic analysis of monopile-supported offshore wind turbines. Ocean Eng 271:113785. https://doi.org/10.1016/j.oceaneng.2023.113785

    Article  Google Scholar 

  37. Huang N, Zhao X, Guo Y, Cai G, Wang R (2023) Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China. Energy 278:127761. https://doi.org/10.1016/j.energy.2023.127761

    Article  Google Scholar 

  38. Jiang J, Zhang L, Wen X, Valipour E, Nojavan S (2022) Risk-based performance of power-to-gas storage technology integrated with energy hub system regarding downside risk constrained approach. Int J Hydrogen Energy 47(93):39429–39442. https://doi.org/10.1016/j.ijhydene.2022.09.115

    Article  Google Scholar 

  39. Cao B, Dong W, Lv Z, Gu Y, Singh S, Kumar P (2020) Hybrid microgrid many-objective sizing optimization with fuzzy decision. IEEE Trans Fuzzy Syst 28(11):2702–2710. https://doi.org/10.1109/TFUZZ.2020.3026140

    Article  Google Scholar 

  40. Lin X, Wen Y, Yu R, Yu J, Wen H (2022) Improved weak grids synchronization unit for passivity enhancement of grid-connected inverter. IEEE J Emerg Select Topics Power Electron 10(6):7084–7097. https://doi.org/10.1109/JESTPE.2022.3168655

    Article  Google Scholar 

  41. Faraji E, Abbasi AR, Nejatian S, Zadehbagheri M, Parvin H (2021) Probabilistic planning of the active and reactive power sources constrained to securable-reliable operation in reconfigurable smart distribution networks. Electric Power Syst Res 199:107457

    Google Scholar 

  42. Norouzi MA, Aghaei J, Pirouzi S, Niknam T, Fotuhi-Firuzabad M (2022) Flexibility pricing of integrated unit of electric spring and EVs parking in microgrids. Energy 239:122080

    Google Scholar 

  43. Homayoun R, Bahmani-Firouzi B, Niknam T (2021) Multi-objective operation of distributed generations and thermal blocks in microgrids based on energy management system. IET Gener Transm Distrib 15(9):1451–1462

    Google Scholar 

  44. Shayegan-Rad A, Badri A, Zangeneh A (2017) Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties. Energy 121:114–125

    Google Scholar 

  45. Wang Y, Ma H, Xiao X, Wang Y, Zhang Y, Wang H (2023) Harmonic state estimation for distribution networks based on multi-measurement data. IEEE Trans Power Deliv 38(4):2311–2325. https://doi.org/10.1109/TPWRD.2023.3239479

    Article  Google Scholar 

  46. Wang Y, He H, Xiao X, Li S, Chen Y, Ma H (2023) Multi-stage voltage sag state estimation using event-deduction model corresponding to EF. EG, and EP, IEEE Trans Power Delivery 38(2):797–811. https://doi.org/10.1109/TPWRD.2022.3198854

    Article  Google Scholar 

  47. Taghieh A, Mohammadzadeh A, Zhang C, Kausar N, Castillo O (2022) A type-3 fuzzy control for current sharing and voltage balancing in microgrids. Appl Soft Comput 129:109636. https://doi.org/10.1016/j.asoc.2022.109636

    Article  Google Scholar 

  48. Wang H, Wang B, Luo P, Ma F, Zhou Y, Mohamed MA (2022) State evaluation based on feature identification of measurement data: for resilient power system. CSEE J Power Energy Syst 8(4):983–992

    Google Scholar 

  49. Li P, Hu J, Qiu L, Zhao Y, Ghosh BK (2022) A distributed economic dispatch strategy for power-water networks. IEEE Trans Control Netw Syst 9(1):356–366. https://doi.org/10.1109/TCNS.2021.3104103

    Article  MathSciNet  Google Scholar 

  50. Azarhooshang AR, Sedighizadeh D, Sedighizadeh M (2021) Two-stage stochastic operation considering day-ahead and real-time scheduling of microgrids with high renewable energy sources and electric vehicles based on multi-layer energy management system. Electric Power Systems Research 201:107527

    Google Scholar 

  51. Rashidi MM, Mahariq I, Murshid N, Wongwises S, Mahian O, Nazari MA (2022) Applying wind energy as a clean source for reverse osmosis desalination: a comprehensive review. Alex Eng J 61(12):12977–12989

    Google Scholar 

  52. Herez A, Jaber H, El Hage H, Lemenand T, Chahine K, Ramadan M, Khaled M (2023) Parabolic trough photovoltaic thermoelectric hybrid system: simulation model, parametric analysis, and practical recommendations. International Journal of Thermofluids 17:100309

    Google Scholar 

  53. Wehbi Z, Taher R, Faraj J, Castelain C, Khaled M (2022) Hybrid thermoelectric generators-renewable energy systems: a short review on recent developments. Energy Rep 8:1361–1370

    Google Scholar 

  54. Alhuyi Nazari M, Salem M, Mahariq I, Younes K, Maqableh BB (2021) Utilization of data-driven methods in solar desalination systems: a comprehensive review. Frontiers in Energy Research 9:742615

    Google Scholar 

  55. Mostafaeipour A, Dehshiri SSH, Dehshiri SJH, Almutairi K, Taher R, Issakhov A, Techato K (2021) A thorough analysis of renewable hydrogen projects development in Uzbekistan using MCDM methods. Int J Hydrogen Energy 46(61):31174–31190

    Google Scholar 

  56. Liu C, Hashemian M, Shawabkeh A, Dizaji HS, Saleem S, Batcha MFM, Wae-hayee M (2021) CFD-based irreversibility analysis of avant-garde semi-O/O-shape grooving fashions of solar pond heat trade-off unit. Renewable Energy 171:328–343

    Google Scholar 

  57. Wang H, Wu X, Zheng X, Yuan X (2022) Model predictive current control of nine-phase open-end winding PMSMs with an online virtual vector synthesis strategy. IEEE Trans Indust Electron. https://doi.org/10.1109/TIE.2022.3174241

    Article  Google Scholar 

  58. Liu S, Liu C (2021) Virtual-vector-based robust predictive current control for dual three-phase PMSM. IEEE Trans Industr Electron 68(3):2048–2058. https://doi.org/10.1109/TIE.2020.2973905

    Article  Google Scholar 

  59. Liu S, Liu C (2021) Direct harmonic current control scheme for dual three-phase PMSM drive system. IEEE Trans Power Electron 36(10):11647–11657. https://doi.org/10.1109/TPEL.2021.3069862

    Article  Google Scholar 

  60. Liu S, Liu C, Zhao H, Liu Y, Dong Z (2022) Improved Flux weakening control strategy for five-phase PMSM considering harmonic voltage vectors. IEEE Trans Power Electron 37(9):10967–10980. https://doi.org/10.1109/TPEL.2022.3164047

    Article  Google Scholar 

  61. Luo Z, Cai S, Hao S, Bailey TP, Luo Y, Luo W, Kanatzidis MG (2021) Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe. IEEE Trans Indust Electron. https://doi.org/10.1039/d1ee02986j

    Article  Google Scholar 

  62. Tian H, Li R, Salah B, Thinh P (2023) Bi-objective optimization and environmental assessment of SOFC-based cogeneration system: performance evaluation with various organic fluids. Process Saf Environ Prot 178:311–330. https://doi.org/10.1016/j.psep.2023.07.040

    Article  Google Scholar 

  63. Deng W, Zhang Y, Tang Y, Li Q, Yi Y (2023) A neural network-based adaptive power-sharing strategy for hybrid frame inverters in a microgrid. Frontiers in Energy Res. https://doi.org/10.3389/fenrg.2022.1082948

    Article  Google Scholar 

  64. Said M, El-Rifaie AM, Tolba MA, Houssein EH, Deb S (2021) An efficient chameleon swarm algorithm for economic load dispatch problem. Mathematics 9(21):2770

    Google Scholar 

  65. Manusov V, Beryozkina S, Nazarov M, Safaraliev M, Zicmane I, Matrenin P, Ghulomzoda A (2022) Optimal management of energy consumption in an autonomous power system considering alternative energy sources. Mathematics 10(3):525

    Google Scholar 

  66. Ijaz M, Asim SM, Mahariq I (2022). Flexible robust regression-ratio type estimators and its applications. Math Prob Eng, 2022.

  67. Kousar S, Sangi MN, Kausar N, Pamucar D, Ozbilge E, Cagin T (2023) Multi-objective optimization model for uncertain crop production under neutrosophic fuzzy environment: A case study. AIMS Math 8(3):7584–7605

    MathSciNet  Google Scholar 

  68. Wahyudie A, Susilo TB, Nandar CSA, Fayez S, Errouissi R (2021) Simple robust PID tuning for magnetic levitation systems using model-free control and\cal H _ ∞ ℋ∞ control strategies. Int J Control Autom Syst 19:3956–3966

    Google Scholar 

  69. Jaffar F, Mashwani WK, Al-Marzouki SM, Aamir N, Abiad M (2022) Self-decisive algorithm for unconstrained optimization problems as in biomedical image analysis. Front Comput Neurosci 16:994161

    Google Scholar 

  70. Tavarov SS, Zicmane I, Beryozkina S, Praveenkumar S, Safaraliev M, Shonazarova S (2022) Evaluation of the operating modes of the urban electric networks in Dushanbe City. Tajikistan Inventions 7(4):107

    Google Scholar 

  71. Tavarov SS, Matrenin P, Safaraliev M, Senyuk M, Beryozkina S, Zicmane I (2023) Forecasting of electricity consumption by household consumers using fuzzy logic based on the development plan of the power system of the Republic of Tajikistan. Sustainability 15(4):3725

    Google Scholar 

  72. Ali MH, El-Rifaie AM, Youssef AA, Tulsky VN, Tolba MA (2023) Techno-economic strategy for the load dispatch and power flow in power grids using peafowl optimization algorithm. Energies 16(2):846

    Google Scholar 

  73. Rokbani N, Neji B, Slim M, Mirjalili S, Ghandour R (2022) A multi-objective modified PSO for inverse kinematics of a 5-DOF Robotic Arm. Appl Sci 12(14):7091

    Google Scholar 

  74. Abd-Elkader AA, Rashdan M, Hasaneen ESA, Hamed HF (2020) FPGA-based optimized design of montgomery modular multiplier. IEEE Trans Circuits Syst II Express Briefs 68(6):2137–2141

    Google Scholar 

  75. Shehata AA, Tolba MA, El-Rifaie AM, Korovkin NV (2022) Power system operation enhancement using a new hybrid methodology for optimal allocation of FACTS devices. Energy Rep 8:217–238

    Google Scholar 

  76. Dinc A, Mamedov A (2021) Optimization of surface quality and machining time in micro-milling of glass. Aircr Eng Aerosp Technol 94(5):676–686

    Google Scholar 

  77. Jabbour K, El Hassan N, Arabi M, Chemali R, Nasr Y (2022) A thermodynamic methodology toward an optimized methane decomposition process for enhanced hydrogen production and low carbon accumulation: Effect of non-hydrocarbon co-feeds. Chem Eng Res Des 188:50–68

    Google Scholar 

  78. Saini G, Hanumagowda BN, Mulki H, Raju SSK, Varma SVK, Barghout K, Al-Kouz W (2023) Entropy generation optimization in couple stress fluid flow with variable viscosity and aligned magnetic field. Sustainability 15(3):2493

    Google Scholar 

  79. Maglad AM, Houda M, Alrowais R, Khan AM, Jameel M, Rehman SKU, Rehman MF (2023) Bim-based energy analysis and optimization using insight 360 (case study). Case Stud Construct Mater 18:e01755

    Google Scholar 

  80. Xifeng W, Xiaoluan Z, Mahariq I, Salem M, Ghalandari M, Ghadak F, Abedini M (2022) Performance optimization of the helical heat exchanger with turbulator. Frontiers in Energy Res 9:789316

    Google Scholar 

  81. Baili J, Raza A, Azab M, Ali K, El Ouni MH, Haider H, Farooq MA (2023) Experiments and predictive modeling of optimized fiber-reinforced concrete columns having FRP rebars and hoops. Mech Adv Mater Struct 30(23):4913–4932

    Google Scholar 

  82. Smirnova EN, Ovsyannikova AS, Zavjalov SV, Dong G (2019) On features of implementation of SEFDM-transmitter with optimal shape of envelope. J Phys: Conf Series, IOP Publishing 1236(1):012067

    Google Scholar 

  83. Makarov SB, Pavlov VA, Bezborodov AK, Bobrovskiy AI, Ge D. (2020). Multiple object tracking using convolutional neural network on aerial imagery sequences. In: International Youth Conference on Electronics, Telecommunications and Information Technologies: Proceedings of the YETI 2020, St. Petersburg, Russia (pp. 413–420). Cham: Springer International Publishing.

  84. Yu D, Duan C, Gu B (2023) Design and evaluation of a novel plan for thermochemical cycles and PEM fuel cells to produce hydrogen and power: application of environmental perspective. Chemosphere 334:138935. https://doi.org/10.1016/j.chemosphere.2023.138935

    Article  Google Scholar 

  85. Xiao S, Wang Z, Wu G, Guo Y, Gao G, Zhang X, Li P (2023) The impact analysis of operational overvoltage on traction transformers for high-speed trains based on the improved capacitor network methodology. IEEE Trans Transport Electrif. https://doi.org/10.1109/TTE.2023.3283668

    Article  Google Scholar 

  86. Luo P, Wang B, Wang H, Ma F, Ma H, Wang L (2023) An ultrasmall bolt defect detection method for transmission line inspection. IEEE Trans Instrument Measure. https://doi.org/10.1109/TIM.2023.3241994

    Article  Google Scholar 

  87. Yuan C, Liu D, Zhu Y, Zeng T, Jiang B, Tang C, Li Q (2023) Effect of charge transport on electrical degradation in polypropylene/organic molecular semiconductor composites for HVDC cable insulation. Appl Phys Lett. https://doi.org/10.1063/5.0133417

    Article  Google Scholar 

  88. Zheng X, Cai G, Guo J, Gao W, Huang Y, Tong X (2023) Combustion characteristics and thermal decomposition mechanism of the flame-retardant cable in urban utility tunnel. Case Stud Therm Eng 44:102887

    Google Scholar 

  89. Wu Z, Lin B, Fan J, Zhao J, Zhang Q, Li L (2022) Effect of dielectric relaxation of epoxy resin on dielectric loss of medium-frequency transformer. IEEE Trans Dielectric Electric Insulat 29(5):1651–1658. https://doi.org/10.1109/TDEI.2022.3193652

    Article  Google Scholar 

  90. Miao Z, Meng X, Liu L (2021) Design a new thermoelectric module with high practicability based on experimental measurement. Energy Convers Manage 241:114320. https://doi.org/10.1016/j.enconman.2021.114320

    Article  Google Scholar 

  91. Ding Z, Wu X, Chen C, Yuan X (2023) Magnetic field analysis of surface-mounted permanent magnet motors based on an improved conformal mapping method. IEEE Trans Ind Appl 59(2):1689–1698. https://doi.org/10.1109/TIA.2022.3228509

    Article  Google Scholar 

  92. Li H, Li G, Li L (2023) Comparative investigation on combustion characteristics of ADN-based liquid propellants in inert gas and oxidizing gas atmospheres with resistive ignition method. Fuel 334:126742. https://doi.org/10.1016/j.fuel.2022.126742

    Article  Google Scholar 

  93. Meng X, Suzuki RO (2016) Helical configuration for thermoelectric generation. Appl Therm Eng 99:352–357. https://doi.org/10.1016/j.applthermaleng.2016.01.061

    Article  Google Scholar 

  94. Gao Y, Doppelbauer M, Ou J, Qu R (2021) Design of a double-side flux modulation permanent magnet machine for servo application. IEEE J Emerg Select Topics Power Electron 10(2):1671–1682. https://doi.org/10.1109/JESTPE.2021.3105557

    Article  Google Scholar 

  95. Lin X, Liu Y, Yu J, Yu R, Zhang J, Wen H (2022) Stability analysis of Three-phase Grid-Connected inverter under the weak grids with asymmetrical grid impedance by LTP theory in time domain. Int J Electric Power Energy Syst 142:108244. https://doi.org/10.1016/j.ijepes.2022.108244

    Article  Google Scholar 

  96. Senyuk M, Beryozkina S, Berdin A, Moiseichenkov A, Safaraliev M, Zicmane I (2022) Testing of an adaptive algorithm for estimating the parameters of a synchronous generator based on the approximation of electrical state time series. Mathematics 10(22):4187

    Google Scholar 

  97. Senyuk M, Beryozkina S, Gubin P, Dmitrieva A, Kamalov F, Safaraliev M, Zicmane I (2022) Fast algorithms for estimating the disturbance inception time in power systems based on time series of instantaneous values of current and voltage with a high sampling rate. Mathematics 10(21):3949

    Google Scholar 

  98. Xie J, Lakys Y (2023) Application of nonlinear fractional differential equations in computer artificial intelligence algorithms. Appl Math Nonlinear Sci, (accepted)

  99. Senyuk M, Beryozkina S, Ahyoev J, Zicmane I, Safaraliev M (2023) Solution of the emergency control of synchronous generator modes based on the local measurements to ensure the dynamic stability. IET Gener Transm Distrib 17(1):52–65

    Google Scholar 

  100. Zicmane I, Beryozkina S, Gudzius S, Jonaitis A, Kovalenko S, Junghans G, Kuckovskis J (2022). Evaluation of inertial response and frequency regulation in the long-term based on the development strategy of the latvian power system. In: 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1–7). IEEE.

  101. Beryozkina S, Senyuk M, Berdin A, Dmitrieva A, Dmitriev S, Erokhin P (2022) The accelerate estimation method of power system parameters in static and dynamic processes. IEEE Access 10:61522–61529

    Google Scholar 

  102. Dzhuraev S, Beryozkina S, Kamolov M, Safaraliev M, Zicmane I, Nazirov K, Sultonov S (2022) Computation of the zero-wire current under an asymmetric nonlinear load in a distribution network. Energy Rep 8:563–573

    Google Scholar 

  103. Lu C, Zhou H, Li L, Yang A, Xu C, Ou Z, Tian F (2022) Split-core magnetoelectric current sensor and wireless current measurement application. Measurement J Int Measure Confed 188:110527

    Google Scholar 

  104. Li L, Yousif M, El-Kanj N. (2023) Prediction of corporate financial distress based on digital signal processing and multiple regression analysis. Appl Math Nonlinear Sci, (accepted)

  105. Abdelmalek Z, Chemachema M, Sofiane B, Boulkaibet I (2021). Fault tolerant predictive control for constrained hybrid systems with sensors failures. In: Proceedings of the 4th International Conference on Electrical Engineering and Control Applications: ICEECA 2019, 17–19 December 2019, Constantine, Algeria (pp. 973–984). Springer Singapore.

  106. Kotb Y, Alakkoumi M, Kanj H (2021). Sensor network data processing in smart cities. In: 2021 International Conference on Control, Automation and Diagnosis (ICCAD) (pp. 1–6). IEEE.

  107. Neji B, Ferko N, Boulkaibet I, Ghandour R, Al Barakeh Z, Karar AS (2021). Plantar type identification using piezoelectric pressure sensors. In: 2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART) (pp. 1–4). IEEE.

  108. Said S, Albarakeh Z, Beyrouthy T, Alkork S, Nait-Ali A. (2021). Machine-learning based wearable multi-channel sEMG biometrics modality for user's identification. In: 2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART) (pp. 1–4). IEEE.

  109. Alabed S, Al-Rabayah M, Aly WHF (2022). A beamforming technique using rotman lens antenna for wireless relay networks. Comput, Mater Continua, 73(3).

  110. Alabed S, Zreikat AI, Al-Abed M (2022) A computationally efficient non-coherent technique for wireless relay networks. Indonesian J Electric Eng Comput Sci 26(2):869–877

    Google Scholar 

  111. Ahmed HO (2021). 17.16 GOPS\W Sustainable FLS-Based Wireless Sensor Network for Surveillance System using FPGA. In: 2021 Integrated Communications Navigation and Surveillance Conference (ICNS) (pp. 1–10). IEEE.

  112. Zhuravlev A, Razevig V, Chizh M, Dong G, Hu B (2020) A new method for obtaining radar images of concealed objects in microwave personnel screening systems. IEEE Trans Microw Theory Tech 69(1):357–364

    Google Scholar 

  113. Diveev A, Konstantinov S, Shmalko E, Dong G (2021) Machine learning control based on approximation of optimal trajectories. Mathematics 9(3):265

    Google Scholar 

  114. Dabbaghjamanesh M, Kavousi-Fard A, Mehraeen S (2019) Effective scheduling of reconfigurable microgrids with dynamic thermal line rating. IEEE Trans Ind Electron 66(2):1552–1564

    Google Scholar 

  115. Ajour MN, Milyani AH, Abu-Hamdeh NH, AlQemlas T, Khaled MK, Karimipour A (2022) Thermal management of a battery pack using a layer of phase change material around the batteries: changes in the airflow through the battery. J Energy Storage 52:104759

    Google Scholar 

  116. Jokar MR et al (2023) Stationary and mobile storages-based renewable off-grid system planning considering storage degradation cost based on information-gap decision theory optimization. J Energy Storage 58:106389

    Google Scholar 

  117. S Pirouzi, (2023) Network‐constrained unit commitment‐based virtual power plant model in the day‐ahead market according to energy management strategy” IET Generat, Trans Distributon, (accepted), 2023.

  118. Zhang XW, Yu X, Ye X, Pirouzi S (2023) Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method. Energy 278:128054

    Google Scholar 

  119. Pirouzi S, Aghaei J (2019) Mathematical modeling of electric vehicles contributions in voltage security of smart distribution networks. SIMULATION 95(5):429–439

    Google Scholar 

  120. Akbari E, Mousavi-Shabestari SF, Pirouzi S, Jadidoleslam M (2023) Network flexibility regulation by renewable energy hubs using flexibility pricing-based energy management. Renew Energy 206:295–308

    Google Scholar 

  121. Qu Z, Xu C, Yang F, Ling F, Pirouzi S (2023) Market clearing price-based energy management of grid-connected renewable energy hubs including flexible sources according to thermal, hydrogen, and compressed air storage systems. J Energy Storage 69:107981

    Google Scholar 

  122. S Pirouzi, J Aghaei, M Shafie-Khah, GJ Osório, JPS Catalão, (2017) Evaluating the security of electrical energy distribution networks in the presence of electric vehicles. In: Conf. of IEEE Manchester PowerTech, pp. 1–6

  123. S Pirouzi, MA Latify, GR Yousefi, (2015) Investigation on reactive power support capability of PEVs in distribution network operation. In: 23rd Iranian Conference on Electrical Engineering, pp. 1591–1596

  124. Shahbazi A et al (2021) Holistic approach to resilient electrical energy distribution network planning. Int J Electr Power Energy Syst 132:107212

    Google Scholar 

  125. Hamidpour HR et al (2022) Coordinated expansion planning problem considering wind farms, energy storage systems and demand response. Energy 239:122321

    Google Scholar 

  126. Piltan G, Pirouzi S, Azarhooshang AR, Rezaee-Jordehi A, Paeizi A, Ghadamyari M (2022) Storage-integrated virtual power plants for resiliency enhancement of smart distribution systems. J Energy Storage 55:105563

    Google Scholar 

  127. Bagherzadeh L, Shayeghi H, Pirouzi S, Shafie-khah MR, Catalão JPS (2021) Coordinated flexible energy and self-healing management according to the multi-agent system-based restoration scheme in active distribution network. IET Renew Power Gener 15(8):1765–1777

    Google Scholar 

  128. MA Norouzi, J Aghaei, S Pirouzi, (2019) Enhancing distribution network indices using electric spring under renewable generation permission. In: International Conference on Smart Energy Systems and Technologies (SEST), pp. 1–6

  129. Pirouzi S, Aghaei J, Niknam T, Farahmand H, Korpås M (2018) Proactive operation of electric vehicles in harmonic polluted smart distribution networks. IET Gener Transm Distrib 12(4):967–975

    Google Scholar 

  130. Generalized Algebraic Modeling Systems (GAMS). [Online]. Available: http://www.gams.com.

  131. Kavousi-Fard A, Khodaei A (2016) Efficient integration of plug-in electric vehicles via reconfigurable microgrids. Energy 111:653–663

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhao, Z., Yao, X. et al. Operation of Energy and Regulation Reserve Markets in the presence of Virtual Power Plant Including Storage System and Distributed Generation based on Unit Commitment Model. J. Electr. Eng. Technol. 19, 2159–2179 (2024). https://doi.org/10.1007/s42835-023-01732-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-023-01732-4

Keywords

Navigation