Skip to main content
Log in

Electrical Characteristics of Multi-Layered, Solution-Processed Indium Zinc Oxide Thin-Film Transistors

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Solution processable metal oxide semiconductors offer opportunities for large area fabrication of transparent logic circuits without requiring expensive vacuum equipment. Indium zinc oxide (IZO) is one of the more popular research targets for use as active layer in thin-film transistors (TFTs). In this paper, we present our results on the fabrication of TFTs with IZO semiconductor film using spin-coating from the 1:1 molar ratio mixed solution of indium nitrate and zinc carbonate. We optimize the device fabrication process by studying the effect of stacking multiple layers on top of each other. The electrical characteristics of the TFTs are found to depend strongly on the number of the spin coating steps employed. The practical applicability of the TFTs is also demonstrated by fabricating a load-type inverter circuit and measuring its electrical response, modeling operation in digital circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun Y et al (2021) Impact of the channel length on molybdenum disulfide field effect transistors with hafnia-based high-k dielectric gate. AIP Adv 11(6):065229. https://doi.org/10.1063/5.0055574

    Article  Google Scholar 

  2. Zhang Y, Lin Y, He G, Ge B, Liu W (2020) "Balanced performance improvement of a-InGaZnO thin-film transistors using ALD-derived Al2O3-passivated high-k HfGdOx dielectrics (in English). ACS Appl Electron Mater 2(11):3728–3740. https://doi.org/10.1021/acsaelm.0c00763

    Article  Google Scholar 

  3. Park J-H, Seok H-J, Jung SH, Cho HK, Kim H-K (2021) Rapid thermal annealing effect of transparent ITO source and drain electrode for transparent thin film transistors. Ceram Int 47(3):3149–3158. https://doi.org/10.1016/j.ceramint.2020.09.152

    Article  Google Scholar 

  4. Zhang L, Wei J, Zhou K, Wan C, Sun H (2020) Highly transparent IGZO-TFTs uses IGZO source and drain electrodes with a composite insulation layer structure. Optik 204:163654. https://doi.org/10.1016/j.ijleo.2019.163654

    Article  Google Scholar 

  5. Nayak PK, Caraveo-Frescas J, Wang Z, Hedhili MN, Wang Q, Alshareef HN (2014) Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer. Sci Rep 4:4672

    Article  Google Scholar 

  6. Yim K et al (2018) Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor. NPJ Comput Mater 4(1):17

    Article  Google Scholar 

  7. Chen Q-Z et al (2023) Performance of transparent indium–gallium–zinc oxide thin film transistor prepared by all plasma enhanced atomic layer deposition. IEEE Electron Device Lett. https://doi.org/10.1109/led.2023.3239379

    Article  Google Scholar 

  8. Kwon JY et al (2008) Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display. IEEE Electron Device Lett 29(12):1309–1311

    Article  Google Scholar 

  9. Zhu L et al (2021) High-performance amorphous InGaZnO thin-film transistor gated by HfAlOx dielectric with ultralow subthreshold swing. IEEE Trans Electron Devices 68(12):6154–6158. https://doi.org/10.1109/TED.2021.3117492

    Article  Google Scholar 

  10. Si M, Lin Z, Chen Z, Peide DY (2021) High-performance atomic-layer-deposited indium oxide 3-D transistors and integrated circuits for monolithic 3-D integration. IEEE Trans Electron Devices 68(12):6605–6609. https://doi.org/10.1109/TED.2021.3106282

    Article  Google Scholar 

  11. Jeong WH, Bae JH, Kim HJ (2011) High-performance oxide thin-film transistors using a volatile nitrate precursor for low-temperature solution process. IEEE Electron Device Lett 33(1):68–70

    Article  Google Scholar 

  12. He F et al (2021) Solution processed In2O3/IGO heterojunction thin film transistors with high carrier concentration. Ceram Int 47(24):35029–35036. https://doi.org/10.1016/j.ceramint.2021.09.044

    Article  Google Scholar 

  13. Jaehnike F, Pham DV, Bock C, Kunze U (2019) Role of gallium and yttrium dopants on the stability and performance of solution processed indium oxide thin-film transistors. J Mater Chem C 7(25):7627–7635. https://doi.org/10.1039/c8tc06270f

    Article  Google Scholar 

  14. Park J, Gergely T, Rim YS, Pyo S (2019) Significant performance improvement of solution-processed metal oxide transistors by ligand dissociation through coupled temperature–time treatment of aqueous precursors. ACS Appl Electron Mater 1(4):505–512. https://doi.org/10.1021/acsaelm.8b00117

    Article  Google Scholar 

  15. Kim DJ et al (2012) Improved electrical performance of an oxide thin-film transistor having multistacked active layers using a solution process. ACS Appl Mater Interfaces 4(8):4001–4005

    Article  Google Scholar 

  16. Kim DJ, Rim YS, Kim HJ (2013) Enhanced electrical properties of thin-film transistor with self-passivated multistacked active layers. ACS Appl Mater Interfaces 5(10):4190–4194

    Article  Google Scholar 

  17. Zhao H-L et al (2022) Impact of pre-annealing process on electrical properties and stability of indium zinc oxide thin-film transistors. Sci Rep 12(1):1–7. https://doi.org/10.1038/s41598-022-24093-w

    Article  Google Scholar 

  18. Chen Z, Han D, Zhang X, Wang Y (2019) Improving performance of tin-doped-zinc-oxide thin-film transistors by optimizing channel structure. Sci Rep 9(1):17175. https://doi.org/10.1038/s41598-019-53766-2

    Article  Google Scholar 

  19. Yang J, Zhang Y, Qin C, Ding X, Zhang J (2019) Enhanced stability in Zr-doped ZnO TFTs with minor influence on mobility by atomic layer deposition. IEEE Trans Electron Devices 66(4):1760–1765. https://doi.org/10.1109/TED.2019.2896313

    Article  Google Scholar 

  20. Chen H et al (2019) A novel heat dissipation structure for inhibiting hydrogen diffusion in top-gate a-InGaZnO TFTs. IEEE Electron Device Lett 40(9):1447–1450. https://doi.org/10.1109/LED.2019.2927422

    Article  Google Scholar 

  21. Yin H et al (2020) High performance Si nanowire TFTs With ultrahigh on/off current ratio and steep subthreshold swing. IEEE Electron Device Lett 41(1):46–49. https://doi.org/10.1109/LED.2019.2953116

    Article  Google Scholar 

  22. Liu X et al (2018) Induced nano-scale self-formed metal-oxide interlayer in amorphous silicon tin oxide thin film transistors. Sci Rep 8(1):4160. https://doi.org/10.1038/s41598-018-22602-4

    Article  MathSciNet  Google Scholar 

  23. Bestelink E, Landers T, Sporea RA (2019) Turn-off mechanisms in thin-film source-gated transistors with applications to power devices and rectification. Appl Phys Lett 114(18):182103. https://doi.org/10.1063/1.5088681

    Article  Google Scholar 

  24. Lee J, Lim K-H, Kim YS (2018) "Effects of unusual gate current on the electrical properties of oxide thin-film transistors. Sci Rep 8(1):13905. https://doi.org/10.1038/s41598-018-32233-4

    Article  Google Scholar 

  25. Seon J-B et al (2019) Densification process and mechanism of solution-processed amorphous indium zinc oxide thin films for high-performance thin film transistors. Appl Phys Express 12(7):071004. https://doi.org/10.7567/1882-0786/ab2681

    Article  Google Scholar 

  26. Su B-Y et al (2013) Improved negative bias stress stability of IZO thin film transistors via post-vacuum annealing of solution method. Ecs J Solid State Sci 2(7):99. https://doi.org/10.1149/2.007307jss

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Chungbuk National University Korea National University Development Project (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jin Kim.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, S., Tukhtaev, A., Tarsoly, G. et al. Electrical Characteristics of Multi-Layered, Solution-Processed Indium Zinc Oxide Thin-Film Transistors. J. Electr. Eng. Technol. 19, 2521–2526 (2024). https://doi.org/10.1007/s42835-023-01689-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-023-01689-4

Keywords

Navigation