Skip to main content
Log in

Super Resolutional Time Delay Estimation in Multipath Environment Using Matrix Pencil Method

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

This paper introduces techniques to restore super-resolution time delay estimation (TDE) of signals in multi-path environments using the Matrix Pencil Method (MPM). To verify the proposed algorithm, estimation errors are evaluated and compared with traditional Multiple Signal Classification (MUSIC) and cross-correlation approaches. TDE uses cross-correlation to produce measurements. Cross-correlation is based on a single model that considers the ideal environment. At the same time, the measurement precision starts to deteriorate as two or more signals are progressively entered at times shorter than the time interval, requiring super-resolution for accurate time delay measurement. The results of the proposed super-resolution MPM algorithm provide better performance over conventional methods by accurately identifying and quantifying all components to their resolution limits and solving closely spaced frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schmidt R (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34(3):276–280. https://doi.org/10.1109/TAP.1986.1143830

    Article  Google Scholar 

  2. Richard R, Kailath T (1989) ESPRIT-estimation of signal parameters via rotational invariance technique. IEEE Trans Acoust Speech Signal Process 37(7):984–995. https://doi.org/10.1109/29.32276

    Article  Google Scholar 

  3. Stoica P, Nehorai A (1989) MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans Acoust Speech Signal Process 37(5):720–741. https://doi.org/10.1109/ICASSP.1989.267001

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruckstein AM, Shan TJ, Kailath T (1985) Adaptive resolution of overlapping echoes. IEEE Trans Acoust Speech Signal Process 33(6):1357–1367

    Article  Google Scholar 

  5. Hou ZQ, Wu ZD (1982) A new method for resolution estimation of time delay. In: ICASSP 82 IEEE international conference on acoustics, speech, and signal processing. https://doi.org/10.1109/ICASSP.1982.1171764

  6. Hasan MA, Azimi-Sadjadi MR, Dobeck GJ (1998) Separation of multiple time delays using new spectral estimation schemes. IEEE Trans Signal Process 46(6):1580–1590. https://doi.org/10.1109/78.678471

    Article  Google Scholar 

  7. Ko JY, Cho D, Lee SJ (2012) High-resolution TDOA estimation technique using the matrix pencil method. J Korean Instit Navig Port Res 36(10):833–838. https://doi.org/10.5394/KINPR.2012.36.10.833

    Article  Google Scholar 

  8. Ge F, Shen D, Peng Y, Victor O, L. (2007) Super-resolution time delay estimation in multipath environments. IEEE Trans Circuits Syst 54(9):1977–1986. https://doi.org/10.1109/TCSI.2007.904693

    Article  Google Scholar 

  9. Sarkar TK, Pereira O (1995) Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Propag Mag 37(1):48–55. https://doi.org/10.1109/74.370583

    Article  Google Scholar 

  10. Hua Y, Sarkar TK (1990) Matrix pencil method for estimating parameters of exponentially damped undamped sinusoids in noise. IEEE Trans Acoust Speech Signal Process 38(5):814–824. https://doi.org/10.1109/29.56027

    Article  MathSciNet  MATH  Google Scholar 

  11. Quazi A (1981) An overview on the time delay estimate in active and passive systems for target localization. IEEE Trans Acoust Speech Signal Process 29(3):527–533. https://doi.org/10.1109/TASSP.1981.1163618

    Article  Google Scholar 

  12. Vanderveen MC, Van der Veen AJ, Paulraj A (1998) Estimation of multipath parameter sin wireless communications. IEEE Trans Signal Process 46(3):682–690. https://doi.org/10.1109/TASSP.1981.1163618

    Article  Google Scholar 

  13. Manabe T, Takai H (1992) Super resolution of multipath delay profiles measured by PN correlation method. IEEE Trans Antennas Propag 40(5):500–509. https://doi.org/10.1109/8.142624

    Article  Google Scholar 

  14. Ianniello J, P. (1988) High-resolution multipath time delay estimation for broadband random signals. IEEE Trans Acoust Speech Signal Process 36(3):320–327. https://doi.org/10.1109/29.1528

    Article  Google Scholar 

  15. Besson O, Stoica P (1996) Analysis of MUSIC and ESPRIT frequency estimates for sinusoidal signals with low pass envelopes. IEEE Trans Signal Process 44(9):2359–2364. https://doi.org/10.1109/78.536697

    Article  Google Scholar 

  16. Ge FX, Wan Q, Wang XT, Peng YN (2002) Frequency estimation of the sinusoidal signals with low pass envelopes based on the Eigen analysis. IEEE Radar Conf. https://doi.org/10.1109/NRC.2002.999760

    Article  Google Scholar 

  17. Ge FX, Wan Q, Wang XT, Peng YN (2003) Super-resolution frequency estimation of the sinusoidal signals with unknown low pass envelopes. In: Proceedings of the 2002 IEEE radar conference (IEEE Cat. No.02CH37322), pp 273–277. https://doi.org/10.1109/NRC.2002.999760

  18. Park H, Li J (2018) A frequency-domain SPICE approach to high-resolution time delay estimation. IEEE Wireless Commun Lett 7(3):360–363. https://doi.org/10.1109/LWC.2017.2778109

    Article  Google Scholar 

  19. Zhang Y, Li S, Zhu J, Du W (2019) A high-precision time delay estimation method based on fourth-order cumulant. In: Proceedings of the 2019 3rd international conference on circuits, system and simulation (ICCSS), pp 93–97. https://doi.org/10.1109/CIRSYSSIM.2019.8935620

  20. Song G, Kang ZW (2017) Fast pulse time delay estimation algorithm based on variable step size iteration. In: Proceedings of the 2017 4th international conference on information science and control engineering (ICISCE), pp 1505–1509. doi: https://doi.org/10.1109/ICISCE.2017.314

  21. Cobos M, Antonacci F, Comanducci L, Sarti A (2020) Frequency-sliding generalized cross-correlation: a sub-band time delay estimation approach. IEEE/ACM Trans Audio Speech Lang Process 28:1270–1281. https://doi.org/10.1109/TASLP.2020.2983589

    Article  Google Scholar 

  22. Jian Y, Jian L, Jun Z, Yongling L, Hui G, Wangjie C (2019) High-precision time delay estimation algorithm of wideband signal with low signal-to-noise ratio. In: Proceedings of the 2019 IEEE 2nd international conference on information communication and signal processing (ICICSP), pp. 126–129. https://doi.org/10.1109/ICICSP48821.2019.8958581

  23. Kim S, On B, Im S (2017) Performance comparison of FFT-based and GCC-PHAT time delay estimation schemes for target azimuth angle estimation in a passive SONAR array. IEEE Underwater Technol (UT). https://doi.org/10.1109/UT.2017.78902

    Article  Google Scholar 

  24. Li H, Yang K, Duan R (2020) Robust multipath time-delay estimation of broadband source using a vertical line array in deep water. IEEE Signal Process Lett 27:51–55. https://doi.org/10.1109/LSP.2019.2954979

    Article  Google Scholar 

  25. Zhang L, Song C, Sheng W (2019) Time delay estimation based on double dynamic threshold in indoor multipath environment. In: Proceedings of the 2019 IEEE 9th international conference on electronics information and emergency communication (ICEIEC), pp 32–35. https://doi.org/10.1109/ICEIEC.2019.8784467

  26. Oliinyk V, Lukin V, Djurovic I (2018) Time delay estimation for noise-like signals embedded in non-Gaussian noise using adaptive robust DFT. In: Proceedings of the 2018 7th mediterranean conference on embedded computing (MECO), pp 1–4. https://doi.org/10.1109/MECO.2018.8406054

  27. Efimov E, Shevgunov T, Kuznetsov Y (2018) Time delay estimation of cyclostationary signals on PCB using spectral correlation function. In: Proceedings of the 2018 Baltic URSI symposium (URSI), pp 184–187. https://doi.org/10.23919/URSI.2018.8406726

  28. Maab S, Laukner M (2020) Ultrasonic time delay difference estimation with analytic signals and a model system. IEEE Trans Circuits Syst II ExpBriefs 67(10):2234–2238. https://doi.org/10.1109/TCSII.2019.2945697

    Article  Google Scholar 

  29. Chandrasekaran G, Periyasamy S, Panjappagounder RK (2020) Minimization of test time in system on chip using artificial intelligence-based test scheduling techniques. Neural Comput Appl 32:5303–5312. https://doi.org/10.1007/s00521-019-04039-6

    Article  Google Scholar 

  30. Chandrasekaran G, Karthikeyan PR, Kumar NS, Kumarasamy V (2021) Test scheduling of system-on-chip using dragonfly and ant lion optimization algorithms. J Intell Fuzzy Syst 40(3):4905–4917. https://doi.org/10.3233/JIFS-201691

    Article  Google Scholar 

  31. Cheng J, Huang W, Lam HK, Cao J, Zhang Y (2020) Fuzzy-model-based control for singularly perturbed systems with nonhomogeneous markov switching: a dropout compensation strategy. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.3041588

    Article  Google Scholar 

  32. Cheng J, Park JH, Zhao X, Cao J, Qi W (2019) Static output feedback control of switched systems with quantization: a nonhomogeneous sojourn probability approach. Int J Robust Nonlinear Control 29:5992–6005. https://doi.org/10.1002/rnc.4703

    Article  MathSciNet  MATH  Google Scholar 

  33. Yuyan W, Jun C, Xia Z, Jinde C, Mengzhuo L (2021) Asynchronous filtering for nonhomogeneous Markov jumping systems with deception attacks. Appl Math Comput. https://doi.org/10.1016/j.amc.2020.125790

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by KETEP (20174030201440) and NRF(2020R1F1A11062177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhwan Koh.

Ethics declarations

Conflicts of interest

The author declare that they have no conflict of interest.

Availability of Data and Material

Simulation data available on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasegar, V.K., Koh, J. Super Resolutional Time Delay Estimation in Multipath Environment Using Matrix Pencil Method. J. Electr. Eng. Technol. 17, 591–599 (2022). https://doi.org/10.1007/s42835-021-00879-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-021-00879-2

Keywords

Navigation