Skip to main content

Advertisement

Log in

Carbon dynamics in agricultural greenhouse gas emissions and removals: a comprehensive review

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Agriculture is a pivotal player in the climate change narrative, contributing to greenhouse gas (GHG) emissions while offering potential mitigation solutions. This study delved into agriculture’s climate impact. It comprehensively analysed emissions from diverse agricultural sources, carbon sequestration possibilities, and the repercussions of agricultural emissions on climate and ecosystems. The study began by contextualising the historical and societal importance of agricultural GHG emissions within the broader climate change discourse. It then discussed into GHG emitted from agricultural activities, examining carbon dioxide, methane, and nitrous oxide emissions individually, including their sources and mitigation strategies. This research extended beyond emissions, scrutinising their effects on climate change and potential feedback loops in agricultural systems. It underscored the importance of considering both the positive and negative implications of emissions reduction policies in agriculture. In addition, the review explored various avenues for mitigating agricultural emissions and categorised them as sustainable agricultural practices, improved livestock management, and precision agriculture. Within each category, different subsections explain innovative methods and technologies that promise emissions reduction while enhancing agricultural sustainability. Furthermore, the study addressed carbon sequestration and removal in agriculture, focussing on soil carbon sequestration, afforestation, and reforestation. It highlighted agriculture’s potential not only to reduce emissions, but also to serve as a carbon reservoir, lowering overall GHG impact. The research also scrutinised the multifaceted nature of agriculture, examining the obstacles hindering mitigation strategies, including socioeconomic constraints and regulatory hurdles. This study emphasises the need for equitable and accessible solutions, especially for smallholder farmers. It envisioned the future of agricultural emissions reduction, emphasising the advancements in measurement, climate-smart agricultural technologies, and cross-sectoral collaboration. It highlighted agriculture’s role in achieving sustainability and resilience amid a warming world, advocating collective efforts and innovative approaches. In summary, this comprehensive analysis recognised agriculture’s capacity to mitigate emissions while safeguarding food security, biodiversity, and sustainable development. It presents a compelling vision of agriculture as a driver of a sustainable and resilient future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during the study are included in this published article.

References

  1. Badji A, Benseddik A, Bensaha H, Boukhelifa A, Hasrane I (2022) Design, technology, and management of greenhouse: a review. J Clean Prod 373:133753. https://doi.org/10.1016/j.jclepro.2022.133753

    Article  CAS  Google Scholar 

  2. Shukla P, Skea J, Slade R, Khourdajie AA, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley J (2022) In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK and New York, NY, USA). https://doi.org/10.1017/9781009157926.001

  3. Gregory RP (2022) The effect of atmospheric greenhouse gases on firm value and firm size distribution. J Clean Prod 358:131751. https://doi.org/10.1016/j.jclepro.2022.131751

    Article  CAS  Google Scholar 

  4. Stewart K, Balmford A, Scheelbeek P, Doherty A, Garnett EE (2023) Changes in greenhouse gas emissions from food supply in the united kingdom. J Clean Prod 410:137273. https://doi.org/10.1016/j.jclepro.2023.137273

    Article  CAS  Google Scholar 

  5. Jiang O, Li Y, Zheng Y, Gustave W, Tang X, Xu J (2023) Cadmium reduced CH\(_{4}\) emissions by stimulating CH\(_{4}\) oxidation in paddy soils. Environ Res. https://doi.org/10.1016/j.envres.2023.117096

    Article  PubMed  Google Scholar 

  6. Khan MN, Huang J, shah A, Li D, Daba NA, Han T, Du J, Qaswar M, Anthonio CK, Sial TA, Haseeb A, Zhang L, Xu Y, He Z, Zhang H, Núñez-Delgado A (2022) Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar. Environ Res 203:111879. https://doi.org/10.1016/j.envres.2021.111879

  7. Yang X, Liu D, Fu Q, Li T, Hou R, Li Q, Li M, Meng F (2022) Characteristics of greenhouse gas emissions from farmland soils based on a structural equation model: regulation mechanism of biochar. Environ Res 206:112303. https://doi.org/10.1016/j.envres.2021.112303

    Article  CAS  PubMed  Google Scholar 

  8. Gaines AM, Davies T, Shahid M, Taylor F, Wu JH, Hadjikakou M, Pettigrew S, Seferidi P, Neal B (2023) A novel approach to estimate product-specific greenhouse gas emissions for 23,550 australian packaged foods and beverages. J Clean Prod. https://doi.org/10.1016/j.jclepro.2023.138816

    Article  Google Scholar 

  9. Khan MN, Li D, Shah A, Huang J, Zhang L, Núñez-Delgado A, Han T, Du J, Ali S, Sial TA, Lan Z, Hayat S, Song Y, Bai Y, Zhang H (2022) The impact of pristine and modified rice straw biochar on the emission of greenhouse gases from a red acidic soil. Environ Res 208:112676. https://doi.org/10.1016/j.envres.2022.112676

    Article  CAS  PubMed  Google Scholar 

  10. Li F, Anjarsari Y, Wang J, Azzahiidah R, Jiang J, Zou J, Xiang K, Ma H (2022) Arramel, Modulation of the lattice structure of 2d carbon-based materials for improving photo/electric properties. Carbon Lett 1–11

  11. Song K, Baiocchi G, Feng K, Hubacek K, Sun L (2022) Unequal household carbon footprints in the peak-and-decline pattern of U.S. greenhouse gas emissions. J Clean Prod 368:132650. https://doi.org/10.1016/j.jclepro.2022.132650

    Article  CAS  Google Scholar 

  12. Sivaranjanee R, Kumar PS, Rangasamy G (2023) A critical review on biochar for environmental applications. Carbon Lett 1–26

  13. Kamyab H, Chelliapan S, Tavakkoli O, Mesbah M, Bhutto JK, Khademi T, Kirpichnikova I, Ahmad A, ALJohani AA (2022) A review on carbon-based molecularly-imprinted polymers (cbmip) for detection of hazardous pollutants in aqueous solutions. Chemosphere 308:136471. https://doi.org/10.1016/j.chemosphere.2022.136471

    Article  CAS  PubMed  Google Scholar 

  14. Tahir MA, Hamza A, Hussain S, Xie Z, Brestic M, Rastogi A, Allakhverdiev SI, Sarwar G (2022) Carbon sequestrating fertilizers as a tool for carbon sequestration in agriculture under aridisols. Carbon Lett 32(7):1631–1644

    Article  Google Scholar 

  15. Mehryar M, Hafezalkotob A, Azizi A, Sobhani FM (2021) Cooperative reliability allocation in network flow problems considering greenhouse gas emissions: optical fiber networks structure. J Clean Prod 326:129315. https://doi.org/10.1016/j.jclepro.2021.129315

    Article  CAS  Google Scholar 

  16. Cruz OF Jr, Campello-Gómez I, Casco ME, Serafin J, Silvestre-Albero J, Martínez-Escandell M, Hotza D, Rambo CR (2023) Enhanced CO\(_{2}\) capture by cupuassu shell-derived activated carbon with high microporous volume. Carbon Lett 33(3):727–735

    Article  Google Scholar 

  17. Ribeiro-Kumara C, Köster E, Aaltonen H, Köster K (2020) How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environ Res 184:109328. https://doi.org/10.1016/j.envres.2020.109328

    Article  CAS  PubMed  Google Scholar 

  18. Hu Y, Thomsen TP, Fenton O, Sommer SG, Shi W, Cui W (2023) Effects of dairy processing sludge and derived biochar on greenhouse gas emissions from Danish and Irish soils. Environ Res 216:114543. https://doi.org/10.1016/j.envres.2022.114543

    Article  CAS  PubMed  Google Scholar 

  19. Li L, Zhao C, Wang X, Tan Y, Wang X, Liu X, Guo B (2023) Effects of nitrification and urease inhibitors on ammonia-oxidizing microorganisms, denitrifying bacteria, and greenhouse gas emissions in greenhouse vegetable fields. Environ Res 237:116781. https://doi.org/10.1016/j.envres.2023.116781

    Article  CAS  PubMed  Google Scholar 

  20. You X, Wang S, Du L, Wu H, Wei Y (2022) Effects of organic fertilization on functional microbial communities associated with greenhouse gas emissions in paddy soils. Environ Res 213:113706. https://doi.org/10.1016/j.envres.2022.113706

    Article  CAS  PubMed  Google Scholar 

  21. A.G.J.S.S.K.W.D.D.A.J. Kacprzak M, Malińska K, Meers E (2023) Cycles of carbon, nitrogen and phosphorus in poultry manure management technologies - environmental aspects. Crit Rev Environ Sci Technol 53(8):914–938. https://doi.org/10.1080/10643389.2022.2096983

  22. Shaaban M, Khalid MS, Hu R, Zhou M (2022) Effects of water regimes on soil N\(_2\)O, CH\(_{4}\) and CO\(_{2}\) emissions following addition of dicyandiamide and n fertilizer. Environ Res 212:113544. https://doi.org/10.1016/j.envres.2022.113544

    Article  CAS  PubMed  Google Scholar 

  23. Omirou M, Stephanou C, Anastopoulos I, Philippot L, Ioannides IM (2022) Differential response of N\(_2\)O emissions, N\(_2\)O-producing and N\(_2\)O-reducing bacteria to varying tetracycline doses in fertilized soil. Environ Res 214:114013. https://doi.org/10.1016/j.envres.2022.114013

    Article  CAS  PubMed  Google Scholar 

  24. Wabo SG, Klepel O (2021) Nitrogen release and pore formation through koh activation of nitrogen-doped carbon materials: an evaluation of the literature. Carbon Lett 31(4):581–592

    Article  Google Scholar 

  25. Yang H, Guo Y, Fang N, Dong B (2023) Life cycle assessment of greenhouse gas emissions of typical sewage sludge incineration treatment route based on two case studies in china. Environ Res 231:115959. https://doi.org/10.1016/j.envres.2023.115959

    Article  CAS  PubMed  Google Scholar 

  26. Komatsuzaki M, Ohta H (2007) Soil management practices for sustainable agro-ecosystems. Springer, Tech. rep

  27. Kamyab H, Chelliapan S, Hayder G, Yusuf M, Taheri MM, Rezania S, Hasan M, Yadav KK, Khorami M, Farajnezhad M, Nouri J (2023) Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: a review of their antimicrobial properties. Chemosphere 335:139103. https://doi.org/10.1016/j.chemosphere.2023.139103

    Article  CAS  PubMed  Google Scholar 

  28. Feng ZY, Meng LY (2021) Hierarchical porous carbons derived from corncob: study on adsorption mechanism for gas and wastewater. Carbon Lett 31:643–653

    Article  Google Scholar 

  29. Hu Y, Su M, Jiao L (2023) Peak and fall of china’s agricultural ghg emissions. J Clean Prod 389:136035. https://doi.org/10.1016/j.jclepro.2023.136035

    Article  Google Scholar 

  30. Warsame AA, Mohamed J, Mohamed AA (2023) The relationship between environmental degradation, agricultural crops, and livestock production in Somalia. Environ Sci Pollut Res 30(3):7825–7835

    Article  Google Scholar 

  31. Yang HY, Ahn YH (2023) Analysis of electrification and its greenhouse gas reduction potential in the industrial sector of Korea using mixed methods. J Clean Prod 419:138160. https://doi.org/10.1016/j.jclepro.2023.138160

    Article  CAS  Google Scholar 

  32. Xie P, Gong N, Sun F, Li P, Pan X (2023) What factors contribute to the extent of decoupling economic growth and energy carbon emissions in china? Energy Policy 173:113416. https://doi.org/10.1016/j.enpol.2023.113416

    Article  CAS  Google Scholar 

  33. Lamichhane JR, Alletto L, Cong WF, Dayoub E, Maury P, Plaza-Bonilla D, Reckling M, Saia S, Soltani E, Tison G, Debaeke P (2023) Relay cropping for sustainable intensification of agriculture across temperate regions: crop management challenges and future research priorities. Field Crop Res 291:108795. https://doi.org/10.1016/j.fcr.2022.108795

    Article  Google Scholar 

  34. Yahaya SM, Mahmud AA, Abdullahi M, Haruna A (2023) Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: a review. Pedosphere 33(3):385–406. https://doi.org/10.1016/j.pedsph.2022.07.012

    Article  CAS  Google Scholar 

  35. Zhang D, Li D, Wang H, Li H, Li R, Batchelor WD, Ju H, Li Y (2023) Tillage practices offset wheat yield reductions under limited irrigation regime in the north china plain. Soil Tillage Res 230:105687. https://doi.org/10.1016/j.still.2023.105687

    Article  Google Scholar 

  36. Yun JS, Kim JH, Kang SC, Im JS (2023) Mechanism of activated carbon-catalyzed CH\(_{4}\) decomposition process for the production of hydrogen and high-value carbon. Carbon Lett 1–11

  37. Tuohy P, O’Sullivan L, Bracken C, Fenton O (2023) Drainage status of grassland peat soils in Ireland: extent, efficacy and implications for ghg emissions and rewetting efforts. J Environ Manage 344:118391. https://doi.org/10.1016/j.jenvman.2023.118391

    Article  CAS  PubMed  Google Scholar 

  38. Kamyab H, Khademi T, Chelliapan S, SaberiKamarposhti M, Rezania S, Yusuf M, Farajnezhad M, Abbas M, Hun Jeon B, Ahn Y (2023) The latest innovative avenues for the utilization of artificial intelligence and big data analytics in water resource management. Results Eng 20:101566. https://doi.org/10.1016/j.rineng.2023.101566

    Article  Google Scholar 

  39. Kamran M, Yan Z, Ahmad I, Jia Q, Ghani MU, Chen X, Chang S, Li T, Siddique KH, Fahad S, Hou F (2023) Assessment of greenhouse gases emissions, global warming potential and net ecosystem economic benefits from wheat field with reduced irrigation and nitrogen management in an arid region of china. Agric Ecosyst Environ 341:108197. https://doi.org/10.1016/j.agee.2022.108197

    Article  CAS  Google Scholar 

  40. Hashim H, Zubir MA, Kamyab H, Zahran MFI (2022) Decarbonisation of the industrial sector through greenhouse gas mitigation, offset, and emission trading schemes. Chem Eng Trans 97:511–516. https://doi.org/10.3303/CET2297086

    Article  Google Scholar 

  41. Abyar H, Nowrouzi M (2023) Trickling filter systems for sustainable water supply: an evaluation of eco-environmental burdens and greenhouse gas emissions. Environ Res 237:117011. https://doi.org/10.1016/j.envres.2023.117011

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Li ZL, Wu H, Zhou C, Liu X, Leng P, Yang P, Wu W, Tang R, Shang GF et al (2023) Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. Nat Commun 14(1):121

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Bellebcir A, Merouane F, Chekroud K, Bounabi H, Vasseghian Y, Kamyab H, Chelliapan S, Klemeš JJ, Berkani M (2023) Bioprospecting of biosurfactant-producing bacteria for hydrocarbon bioremediation: optimization and characterization. Korean J Chem Eng 1–16

  44. Ly NH, Nguyen NB, Tran HN, Hoang TTH, Joo SW, Vasseghian Y, Kamyab H, Chelliapan S, Klemeš JJ (2023) Metal-organic framework nanopesticide carrier for accurate pesticide delivery and decrement of groundwater pollution. J Clean Prod 402:136809. https://doi.org/10.1016/j.jclepro.2023.136809

    Article  CAS  Google Scholar 

  45. Yingying Zhang WW, Yao H (2023) Urea-based nitrogen fertilization in agriculture: a key source of n2o emissions and recent development in mitigating strategies. Arch Agron Soil Sci 69(5):663–678. https://doi.org/10.1080/03650340.2022.2025588

    Article  CAS  Google Scholar 

  46. Periakaruppan R, Palanimuthu V, Abed SA, Danaraj J (2023) New perception about the use of nanofungicides in sustainable agriculture practices. Arch Microbiol 205(1):4

    Article  CAS  Google Scholar 

  47. Francaviglia R, Almagro M, Vicente-Vicente JL (2023) Conservation agriculture and soil organic carbon: principles, processes, practices and policy options. Soil Syst. https://doi.org/10.3390/soilsystems7010017

    Article  Google Scholar 

  48. Quandt A, Neufeldt H, Gorman K (2023) Climate change adaptation through agroforestry: opportunities and gaps. Curr Opin Environ Sustain 60:101244. https://doi.org/10.1016/j.cosust.2022.101244

    Article  Google Scholar 

  49. Hao X, Abou Najm M, Steenwerth KL, Nocco MA, Basset C, Daccache A (2023) Are there universal soil responses to cover cropping? A systematic review. Sci Total Environ 861:160600. https://doi.org/10.1016/j.scitotenv.2022.160600

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Gao B, Li Y, Zheng N, Liu C, Ren H, Yao H (2022) Interactive effects of microplastics, biochar, and earthworms on CO\(_{2}\) and N\(_2\)O emissions and microbial functional genes in vegetable-growing soil. Environ Res 213:113728. https://doi.org/10.1016/j.envres.2022.113728

    Article  CAS  PubMed  Google Scholar 

  51. Alshehri DM (2023) Blockchain-assisted internet of things framework in smart livestock farming. Internet Things 22:100739. https://doi.org/10.1016/j.iot.2023.100739

    Article  Google Scholar 

  52. Karabay A, Bolatov A, Varol HA, Chan MY (2023) A central Asian food dataset for personalized dietary interventions. Nutrients. https://doi.org/10.3390/nu15071728

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fangueiro D, Merino P, Pantelopoulos A, Pereira JLS, Amon B, Chadwick DR (2023) The Implications of animal manure management on ammonia and greenhouse gas emissions. Springer International Publishing, pp 99–136. https://doi.org/10.1007/978-3-031-19730-7_5

  54. Saranya T, Deisy C, Sridevi S, Anbananthen KSM (2023) A comparative study of deep learning and internet of things for precision agriculture. Eng Appl Artif Intell 122:106034. https://doi.org/10.1016/j.engappai.2023.106034

    Article  Google Scholar 

  55. Darjee S, Shrivastava M, Langyan S, Singh G, Pandey R, Sharma A, Khandelwal A, Singh R (2023) Integrated nutrient management reduced the nutrient losses and increased crop yield in irrigated wheat. Arch Agron Soil Sci 69(8):1298–1309. https://doi.org/10.1080/03650340.2022.2084535

    Article  CAS  Google Scholar 

  56. Liu A, Imran M, Nassani AA, Binsaeed RH, Zaman K (2023) Reducing carbon emissions with geoscience solutions: a look at the contributions of nuclear energy, technology, and green finance. Geosci Front. https://doi.org/10.1016/j.gsf.2023.101698

    Article  Google Scholar 

  57. Raya I, Kzar HH, Mahmoud ZH, Al Ayub Ahmed A, Ibatova AZ, Kianfar E (2021) A review of gas sensors based on carbon nanomaterial. Carbon Lett 1–26

  58. Tan SS, Kuebbing SE (2023) A synthesis of the effect of regenerative agriculture on soil carbon sequestration in southeast Asian croplands. Agricu Ecosyst Environ 349:108450. https://doi.org/10.1016/j.agee.2023.108450

    Article  CAS  Google Scholar 

  59. Mustafa A, Saeed Q, Karimi Nezhad MT, Nan S, Hongjun G, Ping Z, Naveed M, Minggang X, Nú nez-Delgado A (2023) Physically separated soil organic matter pools as indicators of carbon and nitrogen change under long-term fertilization in a Chinese mollisol. Environ Res 216:114626. https://doi.org/10.1016/j.envres.2022.114626

    Article  CAS  PubMed  Google Scholar 

  60. Kozar R, Djalante R, Leimona B, Subramanian SM, Saito O (2023) The politics of adaptiveness in agroecosystems and its role in transformations to sustainable food systems. Earth System Governance 15:100164. https://doi.org/10.1016/j.esg.2023.100164

    Article  Google Scholar 

  61. Zhang B, Lan K, Harris TB, Ashton MS, Yao Y (2023) Climate-smart forestry through innovative wood products and commercial afforestation and reforestation on marginal land. Proc Natl Acad Sci 120(23):e2221840120. https://doi.org/10.1073/pnas.2221840120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ansari SA, Shakeel A, Sawarkar R, Maddalwar S, Khan D, Singh L (2023) Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. Environ Res 224:115529. https://doi.org/10.1016/j.envres.2023.115529

    Article  CAS  PubMed  Google Scholar 

  63. Low G, Dalhaus T, Meuwissen MP (2023) Mixed farming and agroforestry systems: a systematic review on value chain implications. Agric Syst 206:103606. https://doi.org/10.1016/j.agsy.2023.103606

    Article  Google Scholar 

  64. Mallesh D, Swapna S, Rajitha P, Soujanya Y, Sumana C, Lingaiah N (2023) Synthesis, characterization and evaluation of porous carbon adsorbents derived from waste biomass for CO\(_{2}\) capture. Carbon Lett 1–16

  65. Rasouli K, Rasouli J, Mohtaram MS, Sabbaghi S, Kamyab H, Moradi H, Chelliapan S (2023) Biomass-derived activated carbon nanocomposites for cleaner production: a review on aspects of photocatalytic pollutant degradation. J Clean Prod 419:138181. https://doi.org/10.1016/j.jclepro.2023.138181

    Article  CAS  Google Scholar 

  66. Babu KN, Mandyam S, Jetty S, Dar AA, Ayushi K, Narayanan A, Somaiah S, Narayanaswamy P (2023) Carbon stocks of tree plantations in a western Ghats landscape, India: influencing factors and management implications. Environ Monit Assess 195(3):404

    Article  CAS  PubMed  Google Scholar 

  67. de Sá CD, Søndergaard N, Barioni LG, Camargo RC (2023) The Brazilian way of farming: potential and challenges to agricultural decarbonization. Springer International Publishing, Cham, pp 145–163. https://doi.org/10.1007/978-3-031-29853-0_8

    Book  Google Scholar 

  68. Phiri C, Njira K, Chitedze G (2023) An insight of chickpea production potential, utilization and their challenges among smallholder farmers in Malawi—a review. J Agric Food Res 14:100713. https://doi.org/10.1016/j.jafr.2023.100713

    Article  Google Scholar 

  69. Li K, Li Q (2023) Towards more efficient low-carbon agricultural technology extension in china: identifying lead smallholder farmers and their behavioral determinants. Environ Sci Pollut Res 30(10):27833–27845

    Article  CAS  Google Scholar 

  70. Zhao N, Wang K, Yuan Y (2023) Toward the carbon neutrality: forest carbon sinks and its spatial spillover effect in china. Ecol Econ 209:107837. https://doi.org/10.1016/j.ecolecon.2023.107837

    Article  Google Scholar 

  71. Ding T, Steubing B, Achten WM (2023) Coupling optimization with territorial lca to support agricultural land-use planning. J Environ Manage 328:116946. https://doi.org/10.1016/j.jenvman.2022.116946

    Article  PubMed  Google Scholar 

  72. Shen X, Gatto P, Pagliacci F (2023) Unravelling the role of institutions in market-based instruments: a systematic review on forest carbon mechanisms. Forests. https://doi.org/10.3390/f14010136

    Article  Google Scholar 

  73. Yanes AR, Martinez P, Ahmad R (2020) Towards automated aquaponics: a review on monitoring, IoT, and smart systems. J Clean Prod 263:121571. https://doi.org/10.1016/j.jclepro.2020.121571

    Article  Google Scholar 

  74. Hu R, Shahzad F, Abbas A, Liu X (2022) Decoupling the influence of eco-sustainability motivations in the adoption of the green industrial IoT and the impact of advanced manufacturing technologies. J Clean Prod 339:130708. https://doi.org/10.1016/j.jclepro.2022.130708

    Article  Google Scholar 

  75. Ding S, Ward H, Cucurachi S, Tukker A (2023) Revealing the hidden potentials of internet of things (IoT)—an integrated approach using agent-based modelling and system dynamics to assess sustainable supply chain performance. J Clean Prod 421:138558. https://doi.org/10.1016/j.jclepro.2023.138558

    Article  Google Scholar 

  76. Pirson T, Bol D (2021) Assessing the embodied carbon footprint of IoT edge devices with a bottom-up life-cycle approach. J Clean Prod 322:128966. https://doi.org/10.1016/j.jclepro.2021.128966

    Article  Google Scholar 

  77. Kongboon R, Gheewala SH, Sampattagul S (2022) Greenhouse gas emissions inventory data acquisition and analytics for low carbon cities. J Clean Prod 343:130711. https://doi.org/10.1016/j.jclepro.2022.130711

    Article  CAS  Google Scholar 

  78. Kocak E, Alnour M (2022) Energy r &d expenditure, bioethanol consumption, and greenhouse gas emissions in the united states: non-linear analysis and political implications. J Clean Prod 374:133887. https://doi.org/10.1016/j.jclepro.2022.133887

    Article  CAS  Google Scholar 

  79. Kumar M, Choubey VK, Raut RD, Jagtap S (2023) Enablers to achieve zero hunger through IoT and blockchain technology and transform the green food supply chain systems. J Clean Prod 405:136894. https://doi.org/10.1016/j.jclepro.2023.136894

    Article  Google Scholar 

  80. Kopac T (2023) Current overview of the valorization of bio-wastes for adsorbed natural gas applications. Carbon Lett 1–29

Download references

Acknowledgements

Dr.Hesam Kamyab is a researcher at Universiti Teknologi Malaysia (UTM) under the Post-Doctoral Fellowship Scheme with Vote Number Q.J130000.21A2.05E54. Also, the researcher extends gratitude to the Kavir Group Pty Ltd for their invaluable support and collaboration as a research support executive, contributing significantly to the success of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hesam Kamyab or Morteza SaberiKamarposhti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamyab, H., SaberiKamarposhti, M., Hashim, H. et al. Carbon dynamics in agricultural greenhouse gas emissions and removals: a comprehensive review. Carbon Lett. 34, 265–289 (2024). https://doi.org/10.1007/s42823-023-00647-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00647-4

Keywords

Navigation