Skip to main content
Log in

An electrochemical sensor based on graphene-chitosan-cyclodextrin modification for the detection of Staphylococcus aureus

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

This study reports the synthesis of a novel graphene/chitosan/β-cyclodextrin composite material (GO/CS/β-CD) via a one-step chemical reduction method, which combines the advantages of graphene, chitosan, and β-cyclodextrin. The morphology and structure of the composite were characterized using various techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. Subsequently, sortase A (SA) was immobilized onto the GO/CS/β-CD for the detection of Staphylococcus aureus. The sensor exhibited a good linear relationship within the concentration range of 30–300 CFU/mL, with a detection limit of 12 CFU/mL. The GO/CS/β-CD composite material showed enhanced properties due to the synergistic effect of graphene, chitosan, and β-cyclodextrin. The immobilization of sortase A onto the composite material improved the sensitivity and selectivity of the sensor for the detection of S. aureus. This study presents a novel graphene/chitosan/β-cyclodextrin composite material with immobilized sortase A, demonstrating enhanced sensitivity and selectivity for the detection of Staphylococcus aureus, which has potential for the development of high-performance sensors in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Fitzgerald JR (2012) Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol 20:192–198. https://doi.org/10.1016/j.tim.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  2. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368:874–885. https://doi.org/10.1016/S0140-6736(06)68853-3

    Article  PubMed  Google Scholar 

  3. Otto M (2014) Staphylococcus aureus toxins. Host Microbe Interact Bact 17:32–37. https://doi.org/10.1016/j.mib.2013.11.004

    Article  CAS  Google Scholar 

  4. Grumann D, Nübel U, Bröker BM (2014) Staphylococcus aureus toxins—their functions and genetics. Infect Genet Evol 21:583–592. https://doi.org/10.1016/j.meegid.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  5. Zhou J, Yin L, Dong Y, Peng L, Liu G, Man S, Ma L (2020) CRISPR-Cas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples. Anal Chim Acta 1127:225–233. https://doi.org/10.1016/j.aca.2020.06.041

    Article  CAS  PubMed  Google Scholar 

  6. Farooq U, Ullah MW, Yang Q, Aziz A, Xu J, Zhou L, Wang S (2020) High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens Bioelectron 157:112163. https://doi.org/10.1016/j.bios.2020.112163

    Article  CAS  PubMed  Google Scholar 

  7. Bezdekova J, Zemankova K, Hutarova J, Kociova S, Smerkova K, Adam V, Vaculovicova M (2020) Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chem 321:126673. https://doi.org/10.1016/j.foodchem.2020.126673

    Article  CAS  PubMed  Google Scholar 

  8. Gill AAS, Singh S, Thapliyal N, Karpoormath R (2019) Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review. Microchim Acta 186:114. https://doi.org/10.1007/s00604-018-3186-7

    Article  CAS  Google Scholar 

  9. Chen M, Song Y, Han L, Zhou D, Wang Y, Pan L, Tu K (2022) An ultrasensitive upconversion fluorescence aptasensor based on graphene oxide release and magnetic separation for Staphylococcus aureus detection. Food Anal Methods 15:2791–2800. https://doi.org/10.1007/s12161-022-02336-w

    Article  Google Scholar 

  10. Yang F, Chang T-L, Liu T, Wu D, Du H, Liang J, Tian F (2019) Label-free detection of Staphylococcus aureus bacteria using long-period fiber gratings with functional polyelectrolyte coatings. Biosens Bioelectron 133:147–153. https://doi.org/10.1016/j.bios.2019.03.024

    Article  CAS  PubMed  Google Scholar 

  11. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Paonessa JR, Shah RD, Pickens CI, Lizza BD, Donnelly HK, Malczynski M, Qi C, Wunderink RG (2019) Rapid detection of methicillin-resistant Staphylococcus aureus in BAL: a pilot randomized controlled trial. Chest 155:999–1007. https://doi.org/10.1016/j.chest.2019.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tammina SK, Wan Y, Li Y, Yang Y (2020) Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. J Photochem Photobiol B 202:111734. https://doi.org/10.1016/j.jphotobiol.2019.111734

    Article  CAS  PubMed  Google Scholar 

  14. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2007) Development of an amperometric immunosensor for the quantification of Staphylococcus aureus using self-assembled monolayer-modified electrodes as immobilization platforms. Electroanalysis 19:1476–1482. https://doi.org/10.1002/elan.200703893

    Article  CAS  Google Scholar 

  15. Esteban-Fernández de Ávila B, Pedrero M, Campuzano S, Escamilla-Gómez V, Pingarrón JM (2012) Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus. Anal Bioanal Chem 403:917–925. https://doi.org/10.1007/s00216-012-5738-8

    Article  CAS  PubMed  Google Scholar 

  16. Majumdar T, Chakraborty R, Raychaudhuri U (2013) Development of PEI-GA modified antibody based sensor for the detection of S. aureus in food samples. Food Biosci 4:38–45. https://doi.org/10.1016/j.fbio.2013.08.002

    Article  CAS  Google Scholar 

  17. Tang X, Flandre D, Raskin J-P, Nizet Y, Moreno-Hagelsieb L, Pampin R, Francis LA (2011) A new interdigitated array microelectrode-oxide-silicon sensor with label-free, high sensitivity and specificity for fast bacteria detection. Sens Actuators B Chem 156:578–587. https://doi.org/10.1016/j.snb.2011.02.002

    Article  CAS  Google Scholar 

  18. Bekir K, Barhoumi H, Braiek M, Chrouda A, Zine N, Abid N, Maaref A, Bakhrouf A, Ouada HB, Jaffrezic-Renault N, Mansour HB (2015) Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria. Environ Sci Pollut Res 22:15796–15803. https://doi.org/10.1007/s11356-015-4761-7

    Article  CAS  Google Scholar 

  19. Hernández R, Vallés C, Benito AM, Maser WK, Xavier Rius F, Riu J (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54:553–557. https://doi.org/10.1016/j.bios.2013.11.053

    Article  CAS  PubMed  Google Scholar 

  20. Wu B-Y, Hou S-H, Yin F, Li J, Zhao Z-X, Huang J-D, Chen Q (2007) Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron 22:838–844. https://doi.org/10.1016/j.bios.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  21. Shao Y, Zhu Y, Zheng R, Wang P, Zhao Z, An J (2022) Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv Compos Hybrid Mater 5:3104–3116. https://doi.org/10.1007/s42114-022-00562-8

    Article  CAS  Google Scholar 

  22. Ahmed J, Faisal M, Alsareii SA, Harraz FA (2022) Highly sensitive and selective non-enzymatic uric acid electrochemical sensor based on novel polypyrrole-carbon black-Co3O4 nanocomposite. Adv Compos Hybrid Mater 5:920–933. https://doi.org/10.1007/s42114-021-00391-1

    Article  CAS  Google Scholar 

  23. Brett CMA, Oliveira-Brett AM (2011) Electrochemical sensing in solution—origins, applications and future perspectives. J Solid State Electrochem 15:1487–1494. https://doi.org/10.1007/s10008-011-1447-z

    Article  CAS  Google Scholar 

  24. Sun P, Liu Y, Mo F, Wu M, Xiao Y, Xiao X, Wang W, Dong X (2023) Efficient photocatalytic degradation of high-concentration moxifloxacin over dodecyl benzene sulfonate modified graphitic carbon nitride: enhanced photogenerated charge separation and pollutant enrichment. J Clean Prod 393:136320. https://doi.org/10.1016/j.jclepro.2023.136320

    Article  CAS  Google Scholar 

  25. Wen Z, Ci S, Li J (2009) Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem C 113:13482–13487. https://doi.org/10.1021/jp902830z

    Article  CAS  Google Scholar 

  26. Zou Y, Liang J, She Z, Kraatz H-B (2019) Gold nanoparticles-based multifunctional nanoconjugates for highly sensitive and enzyme-free detection of E.coli K12. Talanta 193:15–22. https://doi.org/10.1016/j.talanta.2018.09.068

    Article  CAS  PubMed  Google Scholar 

  27. Xiao L, Xu W, Huang L, Liu J, Yang G (2022) Nanocomposite pastes of gelatin and cyclodextrin-grafted chitosan nanoparticles as potential postoperative tumor therapy. Adv Compos Hybrid Mater 6:15. https://doi.org/10.1007/s42114-022-00575-3

    Article  CAS  Google Scholar 

  28. Ni J, Huang X, Bai Y, Zhao B, Han Y, Han S, Xu T, Si C, Zhang C (2022) Resistance to aggregation-caused quenching: chitosan-based solid carbon dots for white light-emitting diode and 3D printing. Adv Compos Hybrid Mater 5:1865–1875. https://doi.org/10.1007/s42114-022-00483-6

    Article  CAS  Google Scholar 

  29. He X, Li S, Shen R, Ma Y, Zhang L, Sheng X, Chen Y, Xie D, Huang J (2022) A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv Compos Hybrid Mater 5:1699–1711. https://doi.org/10.1007/s42114-021-00392-0

    Article  CAS  Google Scholar 

  30. Pu L, Zhang J, Jiresse NKL, Gao Y, Zhou H, Naik N, Gao P, Guo Z (2022) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater 5:356–369. https://doi.org/10.1007/s42114-021-00371-5

    Article  CAS  Google Scholar 

  31. Liu C, Yuan B, Guo M, Yang Q, Nguyen TT, Ji X (2021) Effect of sodium lignosulfonate on bonding strength and chemical structure of a lignosulfonate/chitosan-glutaraldehyde medium-density fiberboard adhesive. Adv Compos Hybrid Mater 4:1176–1184. https://doi.org/10.1007/s42114-021-00351-9

    Article  CAS  Google Scholar 

  32. Wang T, Wusigale KD, Amalaradjou MA, Luo Y, Luo Y (2021) Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics. Adv Compos Hybrid Mater 4:696–706. https://doi.org/10.1007/s42114-021-00305-1

    Article  CAS  Google Scholar 

  33. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  34. Jiang Y, Gong J-L, Zeng G-M, Ou X-M, Chang Y-N, Deng C-H, Zhang J, Liu H-Y, Huang S-Y (2016) Magnetic chitosan–graphene oxide composite for anti-microbial and dye removal applications. Int J Biol Macromol 82:702–710. https://doi.org/10.1016/j.ijbiomac.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  35. Ge H, Ma Z (2015) Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). Carbohydr Polym 131:280–287. https://doi.org/10.1016/j.carbpol.2015.06.025

    Article  CAS  PubMed  Google Scholar 

  36. Muniyalakshmi M, Sethuraman K, Silambarasan D (2020) Synthesis and characterization of graphene oxide nanosheets. Int Conf Recent Trends Nanomater Energy Environ Eng Appl 21:408–410. https://doi.org/10.1016/j.matpr.2019.06.375

    Article  CAS  Google Scholar 

  37. Zhang Z, Liu M, Ibrahim MM, Wu H, Wu Y, Li Y, Mersal GAM, El Azab IH, El-Bahy SM, Huang M, Jiang Y, Liang G, Xie P, Liu C (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066. https://doi.org/10.1007/s42114-022-00486-3

    Article  CAS  Google Scholar 

  38. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4:707–715. https://doi.org/10.1007/s42114-021-00307-z

    Article  CAS  Google Scholar 

  39. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238. https://doi.org/10.1007/s42114-021-00368-0

    Article  CAS  Google Scholar 

  40. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  41. Hosseini MA, Malekie S, Ebrahimi N (2020) The analysis of linear dose-responses in gamma-irradiated graphene oxide: can FTIR analysis be considered a novel approach to examining the linear dose-responses in carbon nanostructures? Radiat Phys Chem 176:109067. https://doi.org/10.1016/j.radphyschem.2020.109067

    Article  CAS  Google Scholar 

  42. Lee AY, Yang K, Anh ND, Park C, Lee SM, Lee TG, Jeong MS (2021) Raman study of D* band in graphene oxide and its correlation with reduction. Appl Surf Sci 536:147990. https://doi.org/10.1016/j.apsusc.2020.147990

    Article  CAS  Google Scholar 

  43. Silva DL, Campos JLE, Fernandes TFD, Rocha JN, Machado LRP, Soares EM, Miquita DR, Miranda H, Rabelo C, VilelaNeto OP, Jorio A, Cançado LG (2020) Raman spectroscopy analysis of number of layers in mass-produced graphene flakes. Carbon 161:181–189. https://doi.org/10.1016/j.carbon.2020.01.050

    Article  CAS  Google Scholar 

  44. Cohn AP, Share K, Carter R, Oakes L, Pint CL (2016) Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene. Nano Lett 16:543–548. https://doi.org/10.1021/acs.nanolett.5b04187

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Shi Y-C, Wang A-J, Wu X-L, Chen J-R, Feng J-J (2016) Green-assembly of three-dimensional porous graphene hydrogels for efficient removal of organic dyes. J Coll Interface Sci 484:254–262. https://doi.org/10.1016/j.jcis.2016.09.008

    Article  ADS  CAS  Google Scholar 

  46. Farivar F, Yap PL, Hassan K, Tung TT, Tran DNH, Pollard AJ, Losic D (2021) Unlocking thermogravimetric analysis (TGA) in the fight against “fake graphene” materials. Carbon 179:505–513. https://doi.org/10.1016/j.carbon.2021.04.064

    Article  CAS  Google Scholar 

  47. Ion-Ebrasu D, Pollet BG, Caprarescu S, Chitu A, Trusca R, Niculescu V, Gabor R, Carcadea E, Varlam M, Vasile BS (2020) Graphene inclusion effect on anion-exchange membranes properties for alkaline water electrolyzers. Int J Hydrog Energy 45:17057–17066. https://doi.org/10.1016/j.ijhydene.2020.04.195

    Article  CAS  Google Scholar 

  48. Peng J, Huang Q, Liu Y, Liu P, Zhang C (2019) Photoelectrochemical sensor based on composite of CdTe and nickel tetra-amined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin. Sens Actuators B Chem 294:157–165. https://doi.org/10.1016/j.snb.2019.05.047

    Article  CAS  Google Scholar 

  49. Liu M, Wu H, Wu Y, Xie P, Pashameah RA, Abo-Dief HM, El-Bahy SM, Wei Y, Li G, Li W, Liang G, Liu C, Sun K, Fan R (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5:2021–2030. https://doi.org/10.1007/s42114-022-00541-z

    Article  CAS  Google Scholar 

  50. Wu H, Sun H, Han F, Xie P, Zhong Y, Quan B, Zhao Y, Liu C, Fan R, Guo Z (2021) Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films. Eng Sci 17:113–120

    Google Scholar 

  51. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5:419–430. https://doi.org/10.1007/s42114-021-00378-y

    Article  CAS  Google Scholar 

  52. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa TAA, Huang M, Meng S, Liang G, Hou H, Fan R, Guo Z (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695. https://doi.org/10.1007/s42114-022-00479-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, GL; software, JL; validation, GL, and ZY; formal analysis, GL; investigation, GL, and JL; resources, ZY; data curation, GL, JL, and ZY; writing—original draft preparation, GL; writing—review and editing, JL and ZY; visualization, GL; supervision, ZY; project administration, ZY All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Guochun Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Li, J. & Yang, Z. An electrochemical sensor based on graphene-chitosan-cyclodextrin modification for the detection of Staphylococcus aureus. Carbon Lett. 34, 495–504 (2024). https://doi.org/10.1007/s42823-023-00518-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00518-y

Keywords

Navigation