Skip to main content
Log in

Synthesis of carbon materials with extremely high pyridinic-nitrogen content and controlled edges from aromatic compounds with highly symmetric skeletons

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Selective doping of pyridinic nitrogen in carbon materials has attracted attention due to its significant properties for various applications such as catalysts and electrodes. However, selective doping of pyridinic nitrogen together with controlling skeletal structure is challenging in the absence of catalysts. In this work, four precursors including four fused aromatic rings and pyridinic nitrogen were simply carbonized in the absence of catalysts in order to attain mass synthesis at low cost and a high percentage of pyridinic nitrogen in carbon materials with controlled edges. Among four precursors, dibenzo[f,h]quinoline (DQ) showed an extremely high percentage of pyridinic nitrogen (96 and 86%) after heat treatment at 923 and 973 K, respectively. Experimental spectroscopic analyses combined with calculated spectroscopic analyses using density functional theory calculations unveiled that the C-H next to the pyridinic nitrogen in DQ generated gulf edge structures with controlled pyridinic nitrogen after carbonization. By comparing the reactivities among the four precursors, three main factors required for maintaining the pyridinic nitrogen in carbon materials with controlled edges, such as (1) high thermal stability of the pyridinic nitrogen, (2) the presence of one pyridinic nitrogen in one ring, and (3) the formation of gulf edges including pyridinic nitrogen to protect the pyridinic nitrogen by the C-H groups on the gulf edges, were revealed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data and code availability

Not Applicable.

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Su DS, Centi G (2013) A perspective on carbon materials for future energy application. J Energy Chem 22:151–173. https://doi.org/10.1016/S2095-4956(13)60022-4

    Article  CAS  Google Scholar 

  2. Greil P (2014) Perspectives of nano-carbon based engineering materials. Adv Eng Mater 17:124–137. https://doi.org/10.1002/adem.201400110

    Article  CAS  Google Scholar 

  3. Eletskii AV, Zitserman VY, Kobzev GA (2015) Nanocarbon materials: physicochemical and exploitation properties, synthesis methods, and enegretic applications. High Temp 53:130–150. https://doi.org/10.1134/S0018151X15010034

    Article  CAS  Google Scholar 

  4. Balandin A (2011) Thermal properties of graphene and nanostructured carbon materials. Nature Mater 10:569–581. https://doi.org/10.1038/nmat3064

    Article  CAS  Google Scholar 

  5. Bianco A, Chen Y, Frackowiak E, Holzinger M, Koratkar N, Meunier V, Mikhailovsky S, Strano M, Tascon JMD, Terrones M (2020) Carbon science perspective in 2020: current research and future challenges. Carbon 161:373–391. https://doi.org/10.1016/j.carbon.2020.01.055

    Article  CAS  Google Scholar 

  6. Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140. https://doi.org/10.1016/j.carbon.2018.02.024

    Article  CAS  Google Scholar 

  7. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in super-capacitors. J Mater Chem A 4:1144–1173. https://doi.org/10.1039/C5TA08620E

    Article  CAS  Google Scholar 

  8. Su H, Hu YH (2021) Recent advances in graphene-based materials for fuel cell applications. Energy Sci Eng 9:958–983. https://doi.org/10.1002/ese3.833

    Article  CAS  Google Scholar 

  9. Ma R, Lin G, Zhou Y, Liu Q, Zhang T, Shan G, Yang M, Wang J (2019) A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. Npj Comput Mater 5:78. https://doi.org/10.1038/s41524-019-0210-3

    Article  CAS  Google Scholar 

  10. Shibuya R, Kondo T, Nakamura J (2018) Bottom-up design of nitrogen-containing carbon catalysts for the oxygen reduction reaction. ChemCatChem 10:2019–2023. https://doi.org/10.1002/cctc.201701928

    Article  CAS  Google Scholar 

  11. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2015) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351:1–24. https://doi.org/10.1039/10.1126/science.aad0832

    Article  Google Scholar 

  12. Wu J, Ma L, Yadav RM, Yang Y, Zhang X, Vajtai R, Lou J, Ajayan PM (2015) Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl Mater Interfaces 7:14763–14769. https://doi.org/10.1021/acsami.5b02902

    Article  CAS  Google Scholar 

  13. Ning X, Li Y, Ming J, Wang Q, Wang H, Cao Y, Peng F, Yang Y, Yu H (2018) Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chem Sci 10:1589–1596. https://doi.org/10.1039/C8SC04596H

    Article  Google Scholar 

  14. Zheng B, Cai XL, Zhou Y, Xia XH (2016) Pure pyridinic nitrogen-doped single-layer graphene catalyzes two-electron transfer process of oxygen reduction reaction. ChemElectroChem 3:2036–2042. https://doi.org/10.1002/celc.201600130

    Article  CAS  Google Scholar 

  15. Li R, Li X, Chen J, Wang J, He H, Huang B, Liu Y, Zhou Y, Yang G (2018) Pyridinic-nitrogen highly doped nanotubular carbon arrays grown on a carbon cloth for high-performance and flexible supercapacitors. Nanoscale 10:3981–3989. https://doi.org/10.1039/C7NR07414J

    Article  CAS  Google Scholar 

  16. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5:7936–7942. https://doi.org/10.1039/C2EE21802J

    Article  CAS  Google Scholar 

  17. Khan SM, Kitayama H, Yamada Y, Gohda S, Ono H, Umeda D, Abe K, Hata K, Ohba T (2018) High CO2 sensitivity and reversibility on nitrogen-containing polymer by remarkable CO2 adsorption on nitrogen sites. J Phys Chem C 122:24143–24149. https://doi.org/10.1021/acs.jpcc.8b07420

    Article  CAS  Google Scholar 

  18. Saha D, Kienbaum MJ (2019) Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: a critical review. Microporous Mesoporous Mater 287:29–55. https://doi.org/10.1016/j.micromeso.2019.05.051

    Article  CAS  Google Scholar 

  19. Tanabe T, Yamada Y, Kim J, Koinuma M, Kubo S, Shimano N, Sato S (2016) Knoevenagel condensation using nitrogen-doped carbon catalysts. Carbon 109:208–220. https://doi.org/10.1016/j.carbon.2016.08.003

    Article  CAS  Google Scholar 

  20. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771. https://doi.org/10.1126/science.1170335

    Article  CAS  Google Scholar 

  21. Nolan H, Mendoza-Sanchez B, Kumar NA, McEvoy N, O’Brien S, Nicolosi V, Duesberg GS (2014) Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors. Phys Chem Chem Phys 16:2280–2284. https://doi.org/10.1039/c3cp54877e

    Article  CAS  Google Scholar 

  22. Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944. https://doi.org/10.1021/ja907098f

    Article  CAS  Google Scholar 

  23. Schultz BJ, Dennis RV, Aldinger JP, Jaye C, Wang X, Fischer DA, Cartwright AN, Banerjee S (2014) X-ray absorption spectroscopy studies of electronic structure recovery and nitrogen local structure upon thermal reduction of graphene oxide in an ammonia environment. RSC Adv 4:634–644. https://doi.org/10.1039/C3RA45591B

    Article  CAS  Google Scholar 

  24. Zhang LS, Liang XQ, Song WG, Wu ZY (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanolfuelcell. Phys Chem Chem Phys 12:12055–12059. https://doi.org/10.1039/C0CP00789G

    Article  CAS  Google Scholar 

  25. Park SH, Chae J, Cho MH, Kim JH, Yoo KH, Cho SW, Kim TG, Kim JW (2014) High concentration of nitrogen doped into graphene using N2 plasma with an aluminum oxide buffer layer. J Mater Chem C 2:933–939. https://doi.org/10.1039/C3TC31773K

    Article  CAS  Google Scholar 

  26. Wang CD, Yuen MF, Ng TW, Jha SK, Lu ZZ, Kwok SY, Wong TL, Yang X, Lee CS, Lee ST, Zhang WJ (2012) Plasma-assisted growth and nitrogen doping of graphene films. Appl Phys Lett 100:1–5. https://doi.org/10.1063/1.4729823

    Article  CAS  Google Scholar 

  27. Park S, Hu Y, Hwang JO, Lee ES, Casabianca LB, Cai W, Potts JR, Ha H, Chen S, Oh J, Kim SO, Kim YH, Ishii Y, Ruoff RS (2012) Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat Commun 3:638. https://doi.org/10.1038/ncomms1643

    Article  CAS  Google Scholar 

  28. Zhao Y, Zhou Y, O’Hayre R, Shao Z (2013) Electrocatalytic oxidation of methanol on Pt catalyst supported on nitrogen-doped graphene induced by hydrazine reduction. J Phys Chem Solids 74:1608–1614. https://doi.org/10.1016/j.jpcs.2013.06.004

    Article  CAS  Google Scholar 

  29. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950. https://doi.org/10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  30. King JA, Klimek DR, Miskioglu I, Odegard GM (2015) Mechanical properties of graphene nanoplatelet/epoxy composites. J Compos Mater 49:659–668. https://doi.org/10.1177/0021998314522

    Article  CAS  Google Scholar 

  31. Achaby ME, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A, Bousmina M (2013) Preparation and characterization of melt-blended graphene nanosheets–poly(vinylidene fluoride) nanocomposites with enhanced properties. J Appl Polym Sci 127:4697–4707. https://doi.org/10.1002/app.38081

    Article  CAS  Google Scholar 

  32. Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X (2013) Nitrogen-doped porous carbon prepared from urea formaldehyde resins by template carbonization method for supercapacitors. Ind Eng Chem Res 52:10181–10188. https://doi.org/10.1021/ie400862h

    Article  CAS  Google Scholar 

  33. Luo L, Zhang M, Wang P, Wang Y, Wang F (2018) Nitrogen rich carbon nitride synthesized by copolymerization with enhanced visible light photocatalytic hydrogen evolution. New J Chem 42:1087–1091. https://doi.org/10.1039/C7NJ03659K

    Article  CAS  Google Scholar 

  34. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401. https://doi.org/10.1021/la900923z

    Article  CAS  Google Scholar 

  35. Ho W, Zhang Z, Lin W, Huang S, Zhang X, Wang X, Huang Y (2015) Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4. ACS Appl Mater Interfaces 7:5497–5505. https://doi.org/10.1021/am509213x

    Article  CAS  Google Scholar 

  36. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J (2011) Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J Mater Chem 21:8038–8044. https://doi.org/10.1039/c1jm10845j

    Article  CAS  Google Scholar 

  37. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758. https://doi.org/10.1021/nl803279t

    Article  CAS  Google Scholar 

  38. Lv R, Li Q, Botello-Méndez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Eléas AL, Cruz-Silva R, Gutiérrez HR, Kim YA, Muramatsu H, Zhu J, Endo M, Terrones H, Charlier JC, Pan M, Terrones M (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586. https://doi.org/10.1038/srep00586

    Article  CAS  Google Scholar 

  39. Wu T, Shen H, Sun L, Cheng B, Liu B, Shen J (2012) Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New J Chem 36:1385–1391. https://doi.org/10.1039/C2NJ40068E

    Article  CAS  Google Scholar 

  40. Yasuda S, Yu L, Kim J, Murakoshi K (2013) Selective Nitrogen doping in graphene for oxygen reduction reactions. Chem Commun 49:9627–9629. https://doi.org/10.1039/C3CC45641B

    Article  CAS  Google Scholar 

  41. Dey S, Govindaraj A, Biswas K, Rao CNR (2014) Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chem Phys Lett 595–596:203–208. https://doi.org/10.1016/j.cplett.2014.02.012

    Article  CAS  Google Scholar 

  42. Braghiroli FL, Fierro V, Izquierdo MT, Parmentier J, Pizzi A, Celzard A (2012) Nitrogen-doped carbon materials produced from hydrothermally treated tannin. Carbon 50:5411–5420. https://doi.org/10.1016/j.carbon.2012.07.027

    Article  CAS  Google Scholar 

  43. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li WX, Fu Q, Ma X, Xue Q, Sun G, Bao X (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193. https://doi.org/10.1021/cm102666r

    Article  CAS  Google Scholar 

  44. Geng D, Hu Y, Li Y, Li R, Sun X (2012) One-pot solvothermal synthesis of doped graphene with the designed nitrogen type used as a Pt support for fuel cells. Electrochem Commun 22:65–68. https://doi.org/10.1016/j.elecom.2012.05.033

    Article  CAS  Google Scholar 

  45. He B, Liu F, Yah S (2017) Temperature-directed growth of highly pyridinic nitrogen doped, graphitized, ultra-hollow carbon frameworks as an efficient electrocatalyst for the oxygen reduction reaction. J Mater Chem A 5:18064–18070. https://doi.org/10.1039/C7TA04685E

    Article  CAS  Google Scholar 

  46. Lv Q, Si W, He J, Sun L, Zhang C, Wang N, Yang Z, Li X, Wang X, Deng W, Long Y, Huang C, Li Y (2018) Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat Commun 9:3376. https://doi.org/10.1038/s41467-018-05878-y

    Article  CAS  Google Scholar 

  47. Vo TH, Shekhirev M, Kunkel DA, Orange F, Guinei M, Enders A, Sinitskii A (2014) Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem Commun 50:4172–4174. https://doi.org/10.1039/c4cc00885e

    Article  CAS  Google Scholar 

  48. Ohtsubo N, Gohda S, Gotoh K, Sato S, Yamada Y (2023) Bottom-up synthesis of pyridinic nitrogen-containing carbon materials with C-H groups next to pyridinic nitrogen from two-ring aromatics. Carbon, accepted. https://doi.org/10.1016/j.carbon.2023.02.019

    Article  Google Scholar 

  49. Yamada Y, Tanaka H, Tanaka Y, Kubo S, Taguchi T, Sato S (2022) Toward strategical bottom-up synthesis of carbon materials with exceptionally high pyridinic-nitrogen content: development of screening techniques. Carbon 198:411–434. https://doi.org/10.1016/j.carbon.2022.06.069

    Article  CAS  Google Scholar 

  50. Kawai R, Yamada Y, Gohda S, Sato S (2022) Bottom-up synthesis of pyridinic nitrogen-doped carbon materials using dibenzacridine isomers with zigzag and armchair edges. J Mater Sci 57:7503–7530. https://doi.org/10.1007/s10853-022-07104-z

    Article  CAS  Google Scholar 

  51. Yamada Y, Sato H, Gohda S, Sato S (2023) Toward strategical bottom-up synthesis of carbon materials with exceptionally high basal-nitrogen content: development of screening techniques. Carbon 203:498–522. https://doi.org/10.1016/j.carbon.2022.11.043

    Article  CAS  Google Scholar 

  52. Diana N, Yamada Y, Gohda S, Ono H, Kubo S, Sato S (2021) Carbon materials with high pentagon density. J Mater Sci 56:2912–2943. https://doi.org/10.1007/s10853-020-05392-x

    Article  CAS  Google Scholar 

  53. Liu L, Liu Y, Zybin SV, Sun H, Goddard WAIII (2011) ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. J Phys Chem A 115:11016–11022. https://doi.org/10.1021/jp201599t

    Article  CAS  Google Scholar 

  54. ReaxFF (2016) SCM, Theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com. Accessed 27 Feb 2023

  55. Kato T, Yamada Y, Nishikawa Y, Otomo T, Sato H, Sato S (2021) Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine? J Mater Sci 56:15798–15811. https://doi.org/10.1007/s10853-021-06283-5

    Article  CAS  Google Scholar 

  56. Kato T, Yamada Y, Nishikawa Y, Ishikawa H, Sato S (2021) Carbonization mechanisms of polyimide: methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons. Carbon 178:58–80. https://doi.org/10.1016/j.carbon.2021.02.090

    Article  CAS  Google Scholar 

  57. Yamada Y, Kawai M, Yorimitsu H, Otsuka S, Takanashi M, Sato S (2018) Carbon materials with zigzag and armchair edges. ACS Appl Mater Interfaces 10:40710–40739. https://doi.org/10.1021/acsami.8b11022

    Article  CAS  Google Scholar 

  58. Senda Y, Yamada Y, Morimoto M, Nono N, Sogabe T, Kubo S, Sato S (2019) Analyses of oxidation process for isotropic pitch-based carbon fiber using model compounds. Carbon 142:311–326. https://doi.org/10.1016/j.carbon.2018.10.026

    Article  CAS  Google Scholar 

  59. Gohda S, Yamada Y, Murata M, Saito M, Kanazawa S, Ono H, Sato S (2020) Bottom-up synthesis of highly soluble carbon materials. J Mater Sci 55:11808–11828. https://doi.org/10.1007/s10853-020-04813-1

    Article  CAS  Google Scholar 

  60. Kanazawa S, Yamada Y, Gohda S, Sato S (2021) Bottom-up synthesis of oxygen-containing carbon materials using a Lewis acid catalyst. J Mater Sci 56:15698–15717. https://doi.org/10.1007/s10853-021-06284-4

    Article  CAS  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2016) Gaussian 16, Revision C.0.1. Gaussian Inc., Wallingford CT

    Google Scholar 

  62. Winmostar V9 (2019) X-Ability Co. Ltd., Tokyo, Japan

  63. Yamada Y, Tanaka H, Kubo S, Sato S (2021) Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy. Carbon 185:342–367. https://doi.org/10.1016/j.carbon.2021.08.085

    Article  CAS  Google Scholar 

  64. Sasaki T, Yamada Y, Sato S (2018) Quantitative analysis of zigzag and armchair edges on carbon materials with and without pentagons using infrared spectroscopy. Anal Chem 90:10724–10731. https://doi.org/10.1021/acs.analchem.8b00949

    Article  CAS  Google Scholar 

  65. Yano Y, Mitoma N, Ito H, Itami K (2020) A quest for structurally uniform graphene nanoribbons: synthesis, properties, and applications. J Org Chem 85:4–33. https://doi.org/10.1021/acs.joc.9b02814

    Article  CAS  Google Scholar 

  66. Solà M (2013) Forty years of Clar’s aromatic π-sextet rule. Front Chem 1:22. https://doi.org/10.3389/fchem.2013.00022

    Article  CAS  Google Scholar 

  67. Batsanov SS (2001) Van der Waals radii of elements. Inorg Mater 37:871–885. https://doi.org/10.1023/A:101162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP21K04773.

Funding

This study was funded by JSPS KAKENHI (Grant Number JP21K04773). Yasuhiro Yamada has received research grants from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1556 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, T., Gohda, S., Gotoh, K. et al. Synthesis of carbon materials with extremely high pyridinic-nitrogen content and controlled edges from aromatic compounds with highly symmetric skeletons. Carbon Lett. 33, 1279–1301 (2023). https://doi.org/10.1007/s42823-023-00482-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00482-7

Keywords

Navigation