Skip to main content
Log in

Substrate effect on phonon in graphene layers

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Graphene exhibits high carrier mobility and concentration as well as other remarkable properties. Among them, the thermal behaviors of phonon modes play important roles in the application of optical and electronic devices. Here, A–A stacked graphene were proved well by Raman investigation on G and 2D modes. Temperature-dependent Raman scattering measurements on graphene with various number of layers on different substrates were conducted in the temperature range of 80–460 K. The first-order temperature coefficient of single layer graphene (SLG) on SiO2/Si substrate is obviously smaller than that on Cu foil, indicating that the substrate effect attributes a great impact on graphene phonon temperature dependence. The first-order temperature coefficients of multilayer graphene linearly decrease as the number of layers increases, attributed to the reduction of substrate effect in phonon behaviors, rather than to the anharmonic phonon–phonon (ph–ph) coupling or thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  3. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602

    Article  CAS  Google Scholar 

  4. Sang M, Shin J, Kim K, Yu K-J (2009) Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 9:374

    Article  Google Scholar 

  5. Jeong HS, Kim J, Jo K, Kee J, Choi JH, Koo J et al (2021) Oriented wrinkle textures of free-standing graphene nanosheets: application as a high-performance lithium-ion battery anode. Carbon Lett 31:277–285

    Article  Google Scholar 

  6. Sohrabi SS, Mousavi H, Jalilvand S, Asshabi M (2021) Hydrogenation effects on the thermal and magnetic properties of mono- and bilayer graphene. Carbon Lett 31:1089–1096

    Article  Google Scholar 

  7. Namnabat MS, Barzegar A, Barchiesi E, Javanbakht M (2021) Nonlinear buckling analysis of double-layered graphene nanoribbons based on molecular mechanics. Carbon Lett 31:895–910

    Article  Google Scholar 

  8. Chen Z-F, Chen X-Q, Tao L, Chen K, Long M-Z, Liu X-D, Yan K-Y et al (2018) Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat Commun 9:4909

    Article  Google Scholar 

  9. Mutlu Z, Jacobse PH, McCurdy RD, Llinas JP, Lin Y, Veber GC, Fischer FR, Crommie MF, Bokor J (2021) Bottom-up synthesized nanoporous graphene transistors. Adv Funct Mater 31:2103798

    Article  CAS  Google Scholar 

  10. Ebrahimi H, Roghani-Mamaqani H, Salami-Kalajahi M, Shahi S, Abdollahi A (2020) Chemical incorporation of epoxy-modified graphene oxide into epoxy/novolac matrix for the improvement of thermal characteristics. Carbon Lett 30:13–22

    Article  Google Scholar 

  11. Sierra JF, Neumann I, Cuppens J, Raes B, Costache MV, Valenzuela SO (2018) Thermoelectric spin voltage in graphene. Nat Nanotechnol 13:107–111

    Article  CAS  Google Scholar 

  12. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  13. Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 7:645–2649

    Article  Google Scholar 

  14. Yoon D, Son Y-W, Cheong H (2011) Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett 11:3227–3231

    Article  CAS  Google Scholar 

  15. Chadha N, Sharma R, Saini P (2021) A new insight into the structural modulation of graphene oxide upon chemical reduction probed by Raman spectroscopy and X-ray diffraction. Carbon Lett 31:1125–1131

    Article  Google Scholar 

  16. Melkonyan SV (2021) Coulomb mechanism of Raman radiation in graphene. Carbon Lett 31:1051–1059

    Article  Google Scholar 

  17. Vidano RP, Fischbach B, Willis LJ, Loehr TM (1981) Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun 39:341

    Article  CAS  Google Scholar 

  18. Havener RW, Zhuang H, Brown L, Hennig RG, Park J (2012) Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett 12:3162–3167

    Article  CAS  Google Scholar 

  19. Bonini N, Lazzeri M, Marzari N, Mauri F (2007) Phonon anharmonicities in graphite and graphene. Phys Rev Lett 99:176802

    Article  Google Scholar 

  20. Liu H-N, Cong X, Lin M-L, Tan P-H (2019) The intrinsic temperature-dependent raman spectra of graphite in the temperature range from 4K to 1000K. Carbon 152:451–458

    Article  CAS  Google Scholar 

  21. Guo X, Tian Q-W, Wang Y-S, Liu J-X, Jia G-P, Dou W-D, Song F, Zhang L-J, Qin Z-J, Huang H (2022) Phonon anharmonicities in 7-armchair graphene nanoribbons. Carbon 190:312–318

    Article  CAS  Google Scholar 

  22. Efthimiopoulos I, Mayanna S, Stavrou E, Torode A, Wang Y (2020) Extracting the anharmonic properties of the G-band in graphene nanoplatelets. J Phys Chem C 124:4835–4842

    Article  CAS  Google Scholar 

  23. Shi B-Y, Cao Q-J, Wang Q, Han X, Wu H-F, Chu L-Q, Fang Z-B, Huang H, Tang J-X, Dou W-D (2019) Asymmetric growth of tetragon-shaped single-crystalline graphene flakes on copper foil by annealing treatment under oxygen-free conditions. J Phys Chem C 123:2642–2650

    Article  CAS  Google Scholar 

  24. Cao Q-J, Shi B-Y, Dou W-D, Tang J-X, Mao H-Y (2018) Background pressure does matter for the growth of graphene single crystal on copper foil: key roles of oxygen partial pressure. Carbon 138:458–464

    Article  CAS  Google Scholar 

  25. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  26. Lu A-Y, Wei S-Y, Wu C-Y, Hernandez Y, Chen T-Y et al (2012) Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Adv 2:3008–3013

    Article  CAS  Google Scholar 

  27. Phan H-D, Jung J, Kim Y, Huynh VN, Lee C (2016) Large-area single-crystal graphene grown on a recrystallized Cu(111) surface by using a hole-pocket method. Nanoscale 8:13781–13789

    Article  CAS  Google Scholar 

  28. Akhtar S, Laoui T, Ibrahim A, Kumar AM, Ahmed J, Toor IH (2019) Few-layers graphene film and copper surface morphology for improved corrosion protection of copper. J Mater Eng Perform 28:5541–5550

    Article  CAS  Google Scholar 

  29. Zheng H, Smith RK, Jun Y-W, Kisielowski C, Dahmen U, Paul Alivisatos A (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–1312

    Article  CAS  Google Scholar 

  30. Meca E, Lowengrub J, Kim H, Mattevi C, Shenoy VB (2013) Epitaxial graphene growth and shape dynamics on copper: phase-field modeling and experiments. Nano Lett 13:5692–5697

    Article  CAS  Google Scholar 

  31. Gillen R, Mohr M, Maultzsch J (2010) Raman-active modes in graphene nanoribbons. Phys Status Solidi B 247:2941–2944

    Article  CAS  Google Scholar 

  32. Calizo I, Ghosh S, Bao W-Z, Miao F, Lau CN, Balandin AA (2009) Raman nanometrology of graphene: temperature and substrate effects. Solid State Commun 149:1132–1135

    Article  CAS  Google Scholar 

  33. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 493:51–87

    Article  Google Scholar 

  34. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6:2667–2673

    Article  CAS  Google Scholar 

  35. Ogawa Y, Hu B, Orofeo CM, Tsuji M, Ikeda KI, Mizuno S, Hibino H, Ago H (2012) Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films. J Phys Chem Lett 3:219–226

    Article  CAS  Google Scholar 

  36. He R, Zhao L-Y, Petrone N, Kim KS, Roth M, Hone J, Kim P, Pasupathy A, Pinczuk A (2012) Large physisorption strain in chemical vapor deposition of graphene on copper substrates. Nano Lett 12:2408–2413

    Article  CAS  Google Scholar 

  37. Zouboulis ES, Grimsditch M (1990) Raman scattering in diamond up to 1900 K. Phys Rev B 43:12490

    Article  Google Scholar 

  38. Wang Y-S, Chen F-M, Guo X, Liu J-X, Jiang J-J, Zheng X-M, Wang Z-H et al (2021) In-plane phonon anisotropy and anharmonicity in exfoliated natural black arsenic. J Phys Chem Lett 12:10753–10760

    Article  CAS  Google Scholar 

  39. Papanai GS, Singh J, Sharma ND, Ansari SG, Gupta BK (2021) Temperature dependent Raman scattering of directly grown twisted bilayer graphene film using LPCVD method. Carbon 177:366–376

    Article  CAS  Google Scholar 

  40. Chen S-S, Li Q-Y, Zhang Q-M, Qu Y, Ji H-X, Ruoff RS, Cai W-W (2012) Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 23:365701

    Article  Google Scholar 

  41. Zhao H, Lin Y-C, Yeh CH, Tian H, Chen Y-C, Xie D, Yang Y, Suenaga K, Ren TL, Chiu PW (2014) Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations. ACS Nano 8:10766–10773

    Article  CAS  Google Scholar 

  42. Scheitz S, Glier TE, Nweze C, Heek W, Moch I, Zierold R et al (2022) Carrier injection observed by interface-enhanced Raman scattering from topological insulators on gold substrates. ACS Appl Mater Inter 14:32625–32633

    Article  CAS  Google Scholar 

  43. Muniz AR, Maroudas D (2012) Opening and tuning of band gap by the formation of diamond superlattices in twisted bilayer graphene. Phys Rev B 86:075404

    Article  Google Scholar 

  44. Jiang J-W, Tang H, Wang B-S, Su Z (2008) Raman and infrared properties and layer dependence of the phonon dispersions in multilayered graphene. Phys Rev B 77:235421

    Article  Google Scholar 

  45. Gong C, Floresca HC, Hinojos D, McDonnell S, Qin X et al (2013) Rapid selective etching of PMMA residues from transferred graphene by carbon dioxide. J Phys Chem C 117:23000–23008

    Article  CAS  Google Scholar 

  46. Forster F, Molina-Sanchez A, Engels S, Epping A, Watanabe K, Taniguchi T et al (2013) Dielectric screening of the Kohn anomaly of graphene on hexagonal boron nitride. Phys Rev B 88:085419

    Article  Google Scholar 

  47. Postmus C, Fzrraro JR, Mitra SS (1968) Pressure dependence of infrared eigen frequencies of KCl and KBr. Phys Rep 174:983

    Article  CAS  Google Scholar 

  48. Tsujimoto M, Tanimura M, Tachibana M (2020) Temperature dependence of the Raman spectra of multilayer graphene nanoribbons fabricated by unzipping method. Diam Relat Mater 109:108047

    Article  CAS  Google Scholar 

  49. Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, Bonini N, Basko DM, Galiotis C et al (2009) Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys Rev B 79:205433

    Article  Google Scholar 

  50. Andres PL, Guinea F, Katsnelson MI (2012) Anharmonic effects, and thermal expansion coefficient in single-layer and multilayer graphene. Phys Rev B 86:144103

    Article  Google Scholar 

  51. Tsang DKL, Marsden BJ, Fok SL, Hall G (2005) Graphite thermal expansion relationship for different temperature ranges. Carbon 43:2902–2906

    Article  CAS  Google Scholar 

  52. Chen X, Tian F, Persson C, Duan W, Chen N-X (2013) Interlayer interactions in graphites. Sci Rep 3:03046

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation (NSF) of China (Grants No. 11874427) and from the Fundamental Research Funds for the Central Universities of Central South University (Grants No. 2021zzts0506).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Dou or Han Huang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 398 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wang, Y., You, S. et al. Substrate effect on phonon in graphene layers. Carbon Lett. 33, 1359–1365 (2023). https://doi.org/10.1007/s42823-022-00400-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00400-3

Keywords

Navigation