Skip to main content
Log in

Synthesis and characterization of ethylenediamine functionalized graphene oxide-modified UiO-66-NH2 for quinoline removal

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In this study, UiO-66-NH2 was synthesized and incorporated with graphene aerosol (UiO-66-NH2/GA) and ethylenediamine functionalized graphene oxide (UiO-66-NH2/GO-NH2). These composites were characterized using infrared spectroscopy, powder X-ray diffraction, ultraviolet–visible light spectroscopy, scanning electron microscope, and energy-dispersive X-ray spectroscopy. UiO-66-NH2/GO-NH2 exhibited 93% adsorption of quinoline in 5 h, UiO-66-NH2 and UiO-66-NH2/GA presented 80.4% and 86.5%, respectively. The high adsorption observed on UiO-66-NH2/GO-NH2 was attributed to the unique electronic properties, and hydrogen bonding between the nitrogen atom of quinoline and NH2-phenyl fragment of UiO-66-NH2, and N–H of ethylenediamine. GO also offered combined strong π–π interactions on its surface, and the oxygen coverage (~ 50%) on GO within the structure is responsible for the formation of strong hydrogen bonds with quinoline. Theoretical calculation suggested that UiO-66-NH2/GO-NH2 presented a more favourable adsorption energy (− 18.584 kcal/mol) compared to UiO-66-NH2 (− 16.549 kcal/mol) and UiO-66-NH2/GA (− 13.991 kcal/mol). These results indicate that nanocomposites have a potential application in quinoline capture technologies in the process of adsorptive denitrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Deese RD, Morris RE, Metz AE, Meyers KM, Johnson K, Loegal TN (2019) The characterization of organic nitrogen compounds and their impact on the stability of marginally stable diesel fuels. Energy Fuels 33(7):6659–6669

    Article  CAS  Google Scholar 

  2. Zhang ED, Li G, Jia Y, Liu H (2010) Adsorptive removal of nitrogen-containing compounds from fuel. J Chem Eng Data 55:173–177

    Article  CAS  Google Scholar 

  3. Driscoll C, Whitall D, John A, Boyer E, Castro M, Cronan C, Goodale C, Groffman P, Hopkinson C, Labert K, Lawrence G, Ollinger S (2003) Nitrogen pollution: sources and consequences in the US Northeast. Environ Sci Policy 45(7):8–22

    Google Scholar 

  4. Zhu J, Wu L, Bu Z, Jie S, Li BG (2019) Polyethyleneimine-modified UiO-66-NH2(Zr) metal−organic frameworks: preparation and enhanced CO2 selective adsorption. ACS Omega 4(2):3188–3197

    Article  CAS  Google Scholar 

  5. Cao Y, Zhang H, Song F, Huang T, Ji J, Zhong Q, Chu W, Xu Q (2018) UiO-66-NH2/GO composite: synthesis, characterization and CO2 adsorption performance. Materials 11(11):589

    Article  Google Scholar 

  6. Kim MJ, Park SM, Song S, Won J, Lee JY, Yoon M, Kim K, Seo G (2011) Adsorption of pyridine onto the metal organic framework MIL-101. J Colloid Interface Sci 361:612–617

    Article  CAS  Google Scholar 

  7. Mambrini RV, Saldanha ALM, Ardisson JD, Araujo MH, Moura FCC (2013) Adsorption of sulfur and nitrogen compounds on hydrophobic bentonite. Appl Clay Sci 83–84:286–293

    Article  Google Scholar 

  8. Sano Y, Choi KH, Korai Y, Mochida I (2004) Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization. Appl Catal B Environ 49:219–225

    Article  CAS  Google Scholar 

  9. Ahmed I, Jhung SH (2015) Remarkable improvement in adsorptive denitrogenation of model fossil fuels with CuCl/activated carbon, prepared under ambient condition. Chem Eng J 279(1):327–334

    Article  CAS  Google Scholar 

  10. Kwon JM, Moon JH, Bae YS, Lee DG, Sohn HC, Lee CH (2008) Adsorptive desulfurization and denitrogenation of refinery fuels using mesoporous silica adsorbents. Chemsuschem 1(4):307–309

    Article  CAS  Google Scholar 

  11. Maldonado AJH, Yang RT (2004) Denitrogenation of transportation fuels by zeolites at ambient temperature and pressure. Angew Chem Int Ed 43(8):1004–1006

    Article  Google Scholar 

  12. Tian F, Sun X, Liu X, Zhang H, Liu J, Guo H, Zhang Y, Meng C (2020) Effective adsorptive denitrogenation from model fuels over yttrium ion-exchanged Y zeolite. Chin J Chem Eng 28(2):414–419

    Article  CAS  Google Scholar 

  13. Ofoghi S, Soleimani M, Ravanchi MT (2022) Quinoline adsorption from organic phase on X-type zeolites: experimental and DFT study. Can J Chem Eng 100(4):838–848

    Article  CAS  Google Scholar 

  14. Chavan SM, Shearer GC, Svelle S, Olsbye U, Bonino F, Ethiraj J, Lillerud KP, Bordiga S (2014) Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology. Inorg Chem 53(18):9509–9515

    Article  CAS  Google Scholar 

  15. Wiersum AD, Soubeyrand-Lenior E, Yang Q, Moulin B, Guillerm V, Yahia MB, Bourrelly S, Vimont A, Miller S, Vagner C, Daturi M, Clet G, Serre C, Maurin G (2011) Llewellyn, an evaluation of UiO-66 for gas-based applications. Chem Asian 6(12):3270–3280

    Article  CAS  Google Scholar 

  16. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112(2):724–781

    Article  CAS  Google Scholar 

  17. Cliffe MJ, Wan W, Zou X, Chater PA, Kleppe AK, Tucker MG, Wilhelm H, Funnell NP, Coudert FX, Goodwin AL (2014) Correlation defect nanoregions in a metal-organic framework. Nat Commun 5:4176

    Article  CAS  Google Scholar 

  18. Yang Q, Wiersum AD, Jobic H, Guillerm V, Serre C, Lewellyn PL, Maurin G (2011) Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66(Zr): a joint experimental and modelling approach. J Phys Chem C 115(28):13768–13774

    Article  CAS  Google Scholar 

  19. Kronast A, Eckstein S, Altenbuchner PT, Hindelang K, Vagin SI, Rieger B (2016) Gated channels and selectivity tuning of CO2 over N2 sorption by post-synthetic modification of a UiO-66-type metal-organic framework. Chem Eur J 22:1–9

    Article  Google Scholar 

  20. Cmarik GE, Kim M, Cohen SM, Walton KS (2012) Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 28(44):15606–15613

    Article  CAS  Google Scholar 

  21. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22(24):6632–6640

    Article  CAS  Google Scholar 

  22. Choi W, Lee J (2017) Nanomaterials and their applications; graphene synthesis and applications, 1st edn, Kindle Edition. CRC Press. ISBN 9780367576868

  23. Eltaweil AS, Elshishini HM, Ghatass ZF, Elsubruiti GM (2021) Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-Doped UiO-66 MOF. Powder Technol 379:407–416

    Article  CAS  Google Scholar 

  24. Omer AM, Abd El-Monaem EM, Eltaweil AB (2022) Novel reusable amine-functionalized cellulose acetate beads impregnated aminated graphene oxide for adsorptive removal of hexavalent chromium ions. Int J Biol Macromol 206:925–934

    Article  Google Scholar 

  25. Paulchamy B, Arthi G, Lignesh BD (2015) A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol 6(1):1–4

    Google Scholar 

  26. Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Mullen K (2012) 3D Nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085

    Article  CAS  Google Scholar 

  27. Zhang X, Hou L, Richard F, Samori S (2018) Modular preparation of graphene-base functional architectures through two-step organic reactions: towards high-performance energy storage. Chem Eur J 24(69):18518–18528

    Article  CAS  Google Scholar 

  28. Ogunlaja AS, Mathew CJ, Torto N, Tshentu ZR (2014) The adsorptive extraction of oxidised sulfur-containing compounds from fuels by using molecularly imprinted chitosan materials. React Funct Polym 81:61–76

    Article  CAS  Google Scholar 

  29. Ogunlaja AS, du Sautoy C, Torto N, Tshentu ZR (2014) Design, fabrication and evaluation of intelligent sulfone-selective polybenzimidazole nanofibers. Talanta 126:61–72

    Article  CAS  Google Scholar 

  30. Xu H, Sun X, Yu Y, Liu G, Ma L, Huang G (2019) Removal of quinoline using various particle sizes anthracite: adsorption kinetics and adsorption isotherms. Physicochem Probl Miner Process 55(1):196–207

    CAS  Google Scholar 

  31. Mohan SV, Karthikeyan J (1997) Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environ Pollut 97(1–2):183–187

    Article  CAS  Google Scholar 

  32. Stewart JJP (2020) SCIGRESS, Version FO 3.5.0. Fujitsu Limited, United States

  33. Hay PJ, Wadt WR (1985) Abinitio effective core potentials for molecular calculations—potentials for the transition-metal atoms Sc to Hg. J Chem Phys 82(1):270–283

    Article  CAS  Google Scholar 

  34. Hay PJ, Wadt WR (1985) Abinitio effective core potentials for molecular calculations—potentials for K to Au including the outermost core orbitals. J Chem Phys 82(1):299–310

    Article  CAS  Google Scholar 

  35. Wadt WR, Hay PJ (1985) Abinitio effective core potentials for molecular calculations—potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  36. Saravanan S, Balachandran V (2014) Quantum chemical studies, natural bond orbital analysis and thermodynamic function of 2,5-dichlorophenylisocyanate. Spectrochim Acta Part A Mol Biomol Spectrosc 120:351–365

    Article  CAS  Google Scholar 

  37. Politzer P, Abu-Awwad F (1998) A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies. Theor Chem Acc 99(2):83–87

    Article  CAS  Google Scholar 

  38. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2(11):782–793

    Article  CAS  Google Scholar 

  39. Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in extended structures. VCH Publishers, New York

    Book  Google Scholar 

  40. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  41. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2007) Electrophilicity-based charge transfer descriptor. J Phys Chem A 111(7):1358–1369

    Article  CAS  Google Scholar 

  42. Shahriary L, Athawale A (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ 2:58–63

    Google Scholar 

  43. Park J, Feng D, Yuan S, Zhou HC (2014) Photochromic metal-organic frameworks: reversible control of singlet oxygen generation. Angew Chem Int Ed Engl 53:1–6

    Google Scholar 

  44. Makula P, Pacia M, Macyk W (2018) How to correctly determine the band gap energy of modified semiconductor photocatalysts based On UV–Vis spectra. J Phys Chem Lett 9(23):6814–6817

    Article  CAS  Google Scholar 

  45. Motegi H, Yano K, Setoyama N, Matsuoka Y, Ohmura T, Usuki A (2017) A facile synthesis of Uio-66 systems and their hydrothermal stability. J Porous Mater 24:1327–1333

    Article  CAS  Google Scholar 

  46. Rouquerol J, Llewellyn P, Rouquerol F (2007) Is the BET equation applicable to microporous adsorbents? Stud Surf Sci Catal 160:49–56

    Article  CAS  Google Scholar 

  47. Wang JC, Hu YH, Chen GJ, Dong YB (2016) Cu(ii)/Cu(0)@UiO-66-NH2: base metal@Mofs as heterogeneous catalysts for olefin oxidation and reduction. Chem Commun 52(89):13116–13119

    Article  CAS  Google Scholar 

  48. Ka D, Jang S, Kim MK, Jung H, Lee J, Jung H, Jin Y (2021) Uio-66-NH2/graphene oxide nanocomposites as reactive adsorbents for soman upon long-term exposure to high-humidity environment. Mater Lett 285:129105

    Article  CAS  Google Scholar 

  49. Feng X, Ma X, Li N, Shang C, Yang X, Chen XD (2015) Adsorption of quinoline from liquid hydrocarbons on graphite oxide and activated carbons. RSC Adv 5:74684–74691

    Article  CAS  Google Scholar 

  50. Wang L, Gao Q, Li Z, Wang Y (2020) Improved removal of quinoline from wastewater using coke powder with inorganic ions. Processes 8(2):156

    Article  CAS  Google Scholar 

  51. Ferreira MEO, Vaz BG, Borba CE, Alonso CG, Ostroski IC (2019) Modified activated carbon as a promising adsorbent for quinoline removal. Microporous Mesoporous Mater 277:208–216

    Article  Google Scholar 

  52. Bian Y, Sun H, Luo Y, Gao Q, Li G, Wang Y (2018) Effect of inorganic salt ions on the adsorption of quinoline using coal powder. Processes 78(3):495–505

    Google Scholar 

  53. Sarker M, An HJ, Jhung SH (2018) Adsorptive removal of indole and quinoline from model fuel over various UiO-66s: quantitative contributions of H-bonding and acid−base interactions to adsorption. J Phys Chem C 122:4532–4539

    Article  CAS  Google Scholar 

  54. Ogunlaja AS, Hosten E, Tshentu ZR (2014) Dispersion of asphaltenes in petroleum with ionic liquids-evaluation of molecular interactions in the binary mixture. Ind Eng Chem Res 53(48):18390–18401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research funding from the National Research Foundation (NRF) of South Africa (Grant no: 129887) is acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Contributions

MM: methodology, investigation, validation, ASO: conceptualization, methodology, investigation, funding, visualization, validation.

Corresponding author

Correspondence to Adeniyi S. Ogunlaja.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokgohloa, M., Ogunlaja, A.S. Synthesis and characterization of ethylenediamine functionalized graphene oxide-modified UiO-66-NH2 for quinoline removal. Carbon Lett. 32, 1689–1702 (2022). https://doi.org/10.1007/s42823-022-00370-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00370-6

Keywords

Navigation