Skip to main content

Advertisement

Log in

Ammonia etched petroleum pitch-based porous carbon as efficient catalysts for CO2 electroreduction

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Electrochemical reduction of carbon dioxide to valuable chemicals is a promising way of storing renewable energy through electric-to-chemical energy conversion, while its large-scale application is in urgent need of cheap and high-performance catalysts. Herein, we invent a convenient method to synthesize N-doped porous carbon by ammonia etching the pyrolysis carbon of petroleum pitch. We found the ammonia etching treatment not only increase the pyridinic-N content, but also enlarge the specific surface area of the petroleum pitch-based porous carbon. As a cheap and easily available catalyst for carbon dioxide electroreduction, up to 82% of Faradaic efficiency towards carbon monoxide was obtained at − 0.9 V vs the reversible hydrogen electrode in 0.1 M KHCO3. After a long time electrocatalysis of more than 20 h, the Faradaic efficiency of carbon monoxide remains 80%, indicating the porous carbon as made have an ultra-high stability as catalyst for carbon dioxide reduction. Our work provides a new technology to economically prepare efficient electrocatalysts for carbon dioxide reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li L, Cai FF, Qi FXY, Ma DK (2020) Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate. J Alloy Compd 841:155789

    Article  CAS  Google Scholar 

  2. Xue L, Zhang AA, Wu JF, Wang Q, Liu Y, Zhao YS, Liu SP, Liu Z, Li P, Zeng SH (2021) Surface modification and reconstruction of ZnO hollow microspheres for selective electroreduction of CO2 to CO. J Alloy Compd 882:160703

    Article  CAS  Google Scholar 

  3. Ning H, Mao QH, Wang WH, Yang ZX, Wang XS, Zhao QS, Song Y, Wu MB (2019) N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4. J Alloy Compd 785:7–12

    Article  CAS  Google Scholar 

  4. Gong QF, Ding P, Xu MQ, Zhu XR, Wang MY, Deng J, Ma Q, Han N, Zhu Y, Lu J, Feng ZX, Li YF, Zhou W, Li YG (2019) Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat Commun 10:2807

    Article  Google Scholar 

  5. Yang HP, Lin Q, Zhang C, Yu XY, Cheng Z, Li GD, Hu Q, Ren XZ, Zhang QL, Liu JH, He CX (2020) Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat Commun 11:593

    Article  CAS  Google Scholar 

  6. Ma C, Hou PF, Wang XP, Wang Z, Li WT, Kang P (2019) Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction. Appl Catal B: Environ 250:347–354

    Article  CAS  Google Scholar 

  7. Zhang ML, Wu TS, Hong S, Fan Q, Soo YL, Masa J, Qiu JS, Sun ZY (2019) Efficient electrochemical reduction of CO2 by Ni–N catalysts with tunable performance. ACS Sustain Chem Eng 7:15030–15035

    Article  CAS  Google Scholar 

  8. Zhang BX, Zhang JL, Shi JB, Tan DX, Liu LF, Zhang FY, Lu C, Su ZZ, Tan XN, Cheng XY, Han BX, Zheng LR, Zhang J (2019) Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat Commun 10:2980

    Article  Google Scholar 

  9. Mariano RG, Kang M, Wahab OJ, McPherson IJ, Rabinowitz JA, Unwin PR, Kanan MW (2021) Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat Mater 20:1000–1006

    Article  CAS  Google Scholar 

  10. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136:14107–14113

    Article  CAS  Google Scholar 

  11. Geng ZG, Kong XD, Chen WW, Su HY, Liu Y, Cai F, Wang GX (2018) Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew Chem Int Ed 57:6054–6059

    Article  CAS  Google Scholar 

  12. Wang XS, Pan YY, Ning H, Wang HM, Guo DL, Wang WH, Yang ZX, Zhao QS, Zhang BX, Zheng LR, Zhang JL, Wu MB (2020) Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl Catal B Environ 266:118630

    Article  CAS  Google Scholar 

  13. Gang Y, Pan FP, Fei YH, Du ZC, Hu YH, Li Y (2020) Highly efficient nickel, iron, and nitrogen co-doped carbon catalysts derived from industrial waste petroleum coke for electrochemical CO2 reduction. ACS Sustain Chem Eng 8:8840–8847

    Article  CAS  Google Scholar 

  14. Yan CC, Li HB, Ye YF, Wu HH, Cai F, Si R, Xiao JP, Miao S, Xie SH, Yang F, Li YS, Wang GX, Bao XH (2018) Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci 11:1204–1210

    Article  CAS  Google Scholar 

  15. Yang HP, Wu Y, Lin Q, Fan LD, Chai XY, Zhang QL, Liu JH, He CX, Lin ZQ (2018) Composition tailoring via N and S co-doping and structure tuning by constructing hierarchical pores: metal-free catalysts for high-performance electrochemical reduction of CO2. Angew Chem Int Ed 57:15476–15480

    Article  CAS  Google Scholar 

  16. Li HQ, Xiao N, Hao MY, Song XD, Wang YW, Ji YQ, Liu C, Li C, Guo Z, Zhang F, Qiu JS (2018) Efficient CO2 electroreduction over pyridinic-N active sites highly exposed on wrinkled porous carbon nanosheets. Chem Eng J 351:613–621

    Article  CAS  Google Scholar 

  17. Xie JF, Zhao XT, Wu MX, Li QH, Wang YB, Yao JN (2018) Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew Chem Int Ed 57:9640–9644

    Article  CAS  Google Scholar 

  18. Liu KH, Zhong HX, Yang XY, Bao D, Meng FL, Yan JM, Zhang XB (2017) Composition-tunable synthesis of “clean” syngas via a one-step synthesis of metal-free pyridinic-N-enriched self-supported CNTs: the synergy of electrocatalyst pyrolysis temperature and potential. Green Chem 19:4284–4288

    Article  CAS  Google Scholar 

  19. Liu MJ, Wei F, Yang XM, Dong SA, Li YJ, He XJ (2018) Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template. New Carbon Mater 33:316–323

    Article  CAS  Google Scholar 

  20. Sieira P, de Souza Mendes PR, de Castro A, Pradelle F (2021) Impact of spinning conditions on the diameter and tensile properties of mesophase petroleum pitch carbon fibers using design of experiments. Mater Lett 285:129110

    Article  CAS  Google Scholar 

  21. Ko S, Choi JE, Lee CW, Jeon YP (2019) Preparation of petroleum-based mesophase pitch toward cost-competitive high-performance carbon fibers. Carbon Lett 30:35–44

    Article  Google Scholar 

  22. Navarro Quirant P, Cuadrado-Collados C, Romero-Anaya AJ, Silvestre Albero J, Martinez Escandell M (2020) Preparation of porous carbons from petroleum pitch and polyaniline by thermal treatment for methane storage. Ind Eng Chem Res 59:5775–5785

    Article  CAS  Google Scholar 

  23. Yang W, Deng BJ, Hou LQ, Wang TH, Tian JB, Wang S, Li R, Yang F, Li YF (2020) Sulfur-fixation strategy toward controllable synthesis of molybdenum-based/carbon nanosheets derived from petroleum asphalt. Chem Eng J 380:122552

    Article  CAS  Google Scholar 

  24. Lee SM, Lee SH, Jung DH (2021) Surface oxidation of petroleum pitch to improve mesopore ratio and specific surface area of activated carbon. Sci Rep 11:1460

    Article  CAS  Google Scholar 

  25. Kwak CH, Seo SW, Kim MI, Huh YS, Im JS (2021) Waste plastic for increasing softening point of pitch and specific surface area of activated carbon based on the petroleum residue. Carbon Lett. https://doi.org/10.1007/s42823-020-00211-4

    Article  Google Scholar 

  26. Zhang CH, Fu L, Liu N, Liu MH, Wang YY, Liu ZF (2011) Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater 23:1020–1024

    Article  CAS  Google Scholar 

  27. Wan JX, You Y, Xu YL, Wang C, Zhang PB, Jiang XY, Fang XH, Yang LY, Chen XY (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944

    Article  Google Scholar 

  28. Li WL, Seredych M, Rodríguez-Castellón E, Bandosz TJ (2016) Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and CH4. Chemsuschem 9:606–616

    Article  CAS  Google Scholar 

  29. Yang HB, Hung SF, Liu S, Yuan KD, Miao S, Zhang LP, Huang X, Wang HY, Cai WZ, Chen R, Gao JJ, Yang XF, Chen W, Huang YQ, Chen HM, Li CM, Zhang T, Liu B (2018) Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy 3:140–147

    Article  CAS  Google Scholar 

  30. Zhao R, Liang ZB, Gao S, Yang C, Zhu BJ, Zhao JL, Qu C, Zou RQ, Xu Q (2019) Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew Chem Int Ed 58:1975–1979

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21808242, 52072409); the Major Scientific and Technological Innovation Project of Shandong Province (2020CXGC010403); the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2020-KF-31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingbo Wu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3509 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, H., Guo, Z., Wang, W. et al. Ammonia etched petroleum pitch-based porous carbon as efficient catalysts for CO2 electroreduction. Carbon Lett. 32, 807–814 (2022). https://doi.org/10.1007/s42823-021-00316-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00316-4

Keywords

Navigation