Skip to main content
Log in

Investigation and analysis of surface roughness in machining carbon fiber reinforced polymer composites using artificial intelligence techniques

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon fiber and its composites are increasingly used in many fields including defence, military, and allied industries. Also, surface quality is given due importance, as mating parts are used in machineries for their functioning. In this work, the turning process is considered for Carbon Fiber Reinforced Polymer (CFRP) composites by varying three important cutting variables: cutting speed, feed, and depth of cut. Correspondingly, the surface roughness is measured after the completion of turning operation. As well, a prediction model is created using different fuzzy logic membership function and Levenberg–Marquardt algorithm (LMA) in artificial intelligence. Later, the surface roughness values from the developed models are compared against the experimental values for its correlation and effectiveness in using different membership functions of fuzzy logic and ANN. Thus, the experimental results are analyzed using the effect graphs and it is presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Li L, Sun L, Dai Z, Xiong Z, Huang B, Zhang Y (2019) Experimental investigation on mechanical properties and failure mechanisms of polymer composite-metal hybrid materials processed by direct injection-molding adhesion method. J Mater Process Tech 263:385–395

    Article  CAS  Google Scholar 

  2. Singh AP, Sharma M, Singh I (2013) A review of modeling and control during drilling of fiber reinforced plastic composites. Composites B 47:118–125

    Article  Google Scholar 

  3. Cenna AA, Mathew P (2002) Analysis and prediction of laser cutting parameters of fiber reinforced plastics (FRP) composite materials. Int J Mach Tools Manuf 42:105–113

    Article  Google Scholar 

  4. Krishnamoorthy A, Rajendra Boopathy S, Palanikumar K, Paulo Davim J (2012) Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics. Measurement 45:1286–1296

    Article  Google Scholar 

  5. Wang Y, Thomas Hahn H (2007) AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygro thermal treatments. Compos Sci Technol 67:92–101

    Article  CAS  Google Scholar 

  6. MeltemAltinKarataş HG (2018) A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technol 14:318–326

    Article  Google Scholar 

  7. Denis CD, R, Troulis M, Partridge I.K., (2006) Delamination of Z-pinned carbon fiber reinforced laminates. Compos Sci Technol 66:855–861

    Article  Google Scholar 

  8. Santiuste C, Soldani X, Muguelez MH (2010) Machining FEM model of long fiber composites for aeronautical components. Compos Struct 92:691–698

    Article  Google Scholar 

  9. Wan Aizan Wan Abdul Rahman (2008) Lee Tin Sin, Abdul Razak Rahmat, Injection moulding simulation analysis of natural fiber composite window frame. J Mater Process Technol 197:22–30

    Article  Google Scholar 

  10. Hu NS, Zhang LC (2004) Some observations in grinding unidirectional carbon fiber-reinforced plastics. J Mater Process Technol 152:333–338

    Article  CAS  Google Scholar 

  11. Rusinek R (2010) Cutting process of composite materials: an experimental study. Int J Non-Linear Mech 45:458–462

    Article  Google Scholar 

  12. Palanikumar K (2011) Experimental investigation and optimisation in drilling of GFRP composites. Measurement 44:2138–2148

    Article  Google Scholar 

  13. Palanikumar K, Rubio JC, Abrao AM, Correia AE, Davim JP (2008) Influence of drill point angle in high speed drilling of glass fiber reinforced plastics. J Compos Mater 42(24):2585–2597

    Article  Google Scholar 

  14. Nalbant M, Gokkaya H, Toktas I, Sur G (2009) The experimental investigation of the effects of uncoated, PVD- and CVD- coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using Artificial neural networks. Robot Comput Integr Manuf 25:211–223

    Article  Google Scholar 

  15. Oktem H, Erzurumlu T, Kurtaran H (2005) Application of response surface methodology in the optimization of cutting conditions for surface roughness. J Mater Process Technol 170:11–16

    Article  Google Scholar 

  16. Sarma PMMS, Karunamoorthy L, Palanikumar K (2008) Surface roughness parameters evaluation in machining GFRP composites by PCD tool using digital image processing. J Reinf Plast Compos 28(13):1567–1585

    Article  Google Scholar 

  17. Everstine GC, Rogers TG (1971) A theory of machining of fiber-reinforced materials. J Composite Materials 5:94

    Article  Google Scholar 

  18. Bhatnagar N, Naik NK, Ramakrishnan N (1993) Experimental investigations of drilling on CFRP composites. Mater Manuf Processes 8(6):683–701

    Article  CAS  Google Scholar 

  19. Ahmad JS, Urban N, Cheraghi H (2012) Machining damage in edge trimming of CFRP. Mater Manuf Processes 27(7):802–808

    Article  Google Scholar 

  20. Karkalos NE, Galanis NI, Markopoulos AP (2016) Surface roughness prediction for the milling of Ti–6Al–4V ELI alloy with the use of statistical and soft computing techniques. Measurement 90:25–35

    Article  Google Scholar 

  21. Palanikumar K, Latha B, Senthilkumar VS, Davim JP (2013) Application of artificial neural network for the prediction of surface roughness in drilling GFRP composites. Mater Sci Forum 766:21–36

    Article  Google Scholar 

  22. Rajasekaran T, Palanikumar K, Vinayagam BK (2011) Application of fuzzy logic for modeling surface roughness in turning CFRP using CBN tool. Prod Eng Res Devel 5:191–199

    Article  Google Scholar 

  23. Rajasekaran T, Palanikumar K, Vinayagam BK (2011) Experimental investigation and analysis in turning of CFRP composites. J Compos Mater 46(7):809–821

    Article  Google Scholar 

  24. Rajasekaran T, Palanikumar K, Vinayagam BK (2012) Turning CFRP composites with ceramic tool for surface roughness analysis. Procedia Eng 38:2922–2929

    Article  CAS  Google Scholar 

  25. Sakuma K, Seto M (1983) Tool wear in cutting glass-fibre-reinforced-plastics (the relation between fibre orientation and tool wear). Bull JSME 26(2018):1420–1427

    Article  Google Scholar 

  26. Bhatnagar N, Ramakrishnan NK, Komanduri R (1995) On the machining of fibre reinforced plastic (FRP) composite laminates. Int Jl Mach Tools Manufact 35(5):701–716

    Article  Google Scholar 

  27. Palanikumar K, Mata F, Davim JP (2008) Analysis of surface roughness parameters in turning of FRP tubes by PCD tool. J Mater Process Technol 204:469–474

    Article  CAS  Google Scholar 

  28. Tsao PL, Liu YG (2002) Study on PCD machining. Int J Mach Tools Manuf 42:331–334

    Article  Google Scholar 

  29. Yen J, Langari R (2006) Fuzzy Logic intelligence, Control, and Information. Ltd, New Delhi, Dorling Kindersley (India) Pvt

    Google Scholar 

  30. Latha B, Senthilkumar VS (2010) Application of artificial intelligence for the prediction of delamination in drilling GFRP composites. Int J Prec Technol 1(3/4):314–330

    Article  Google Scholar 

  31. Kaviarasan V, Venkatesan R, Natarajan E (2019) Prediction of surface quality and optimization of process parameters in drilling of Delrin using neural network. Progr Rubber Plast Recycl Technol. 35(3):149–169. https://doi.org/10.1177/1477760619855078

    Article  Google Scholar 

  32. Natarajan E, Kaviarasan V, Lim WH, TiangSSand Tan TT (2018) Enhanced multi-objective teaching-learning-based optimization for machining of Delrin. IEEE Access 6:51528–51546. https://doi.org/10.1109/ACCESS.2018.2869040

    Article  Google Scholar 

  33. Natarajan E, Kaviarasan V, Lim WH, Tiang SS, Parasuraman S, Elango S (2020) Non-dominated sorting modified teaching learning -based optimization for multi-objective machining of polytetrafluoroethylene, (PTFE). J Intell Manuf 31:911–935

    Article  Google Scholar 

  34. Latha B, Senthilkumar VS (2009) Analysis of thrust force in drilling glass fiber-reinforced plastic composites using fuzzy logic. Mater Manuf Processes 24(4):509–516

    Article  CAS  Google Scholar 

  35. Jain AM, Haron H, Sharif S (2010) Prediction of surface roughness in the end milling machining using Artificial Neural Network. Expert Syst Appl 37:1755–1768

    Article  Google Scholar 

  36. Davim JP, Mata F (2007) New machinability study of glass fiber reinforced plastics using polycrystalline diamond and cemented carbide (K15) tools. Mater Des 28:1050–1054

    Article  CAS  Google Scholar 

  37. Ferreira JR, Coppini NL, Miranda GWA (1999) Machining optimization in carbon fiber reinforced composite materials. J Mater Process Technol 92–93:135–140

    Article  Google Scholar 

  38. Palanikumar K, Paulo DJ (2007) Mathematical model to predict tool wear on the machining of glass fibre reinforced plastic composites. Mater Des 28:2008–2014

    Article  CAS  Google Scholar 

  39. Santhanakrishnan G, Krishnamurthy R, Malhotra SK (1992) Investigation into the machining of carbon fibre reinforced plastics with cemented carbides. J Mater Process Technol 30:263–275

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Palanikumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekaran, T., Palanikumar, K. & Latha, B. Investigation and analysis of surface roughness in machining carbon fiber reinforced polymer composites using artificial intelligence techniques. Carbon Lett. 32, 615–627 (2022). https://doi.org/10.1007/s42823-021-00298-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00298-3

Keywords

Navigation