Skip to main content
Log in

Sensing behavior of Cu-embedded C3N monolayer upon dissolved gases in transformer oil: a first-principles study

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Using first-principles theory, this work investigated the Cu-doping behavior on the N-vacancy of the C3N monolayer and simulated the adsorption performance of Cu-doped C3N (Cu–C3N) monolayer upon two dissolved gases (H2 and C2H2). The calculations meant to explore novel candidate for sensing application in the field of electrical engineering evaluating the operation status of the transformers. Our results indicated that the Cu dopant could be stably anchored on the N- vacancy with the Eb of − 3.65 eV and caused a magnetic moment of 1 μB. The Cu–C3N monolayer has stronger performance upon C2H2 adsorption than H2 give the larger Ead, QT and change in electronic behavior. The frontier molecular orbital (FMO) theory indicates that Cu–C3N monolayer has the potential to be applied as a resistance-type sensor for detection of such two gases, while the work function analysis evidences its potential as a field-effect transistor sensor as well. Our work can bring beneficial information for exploration of novel sensing material to be applied in the field of electrical engineering, and provide guidance to explore novel nano-sensors in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR (2015) Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano 9(12):11509–11539

    CAS  Google Scholar 

  2. Zhang X, Yu L, Gui Y, Hu W (2016) First-principles study of SF6 decomposed gas adsorbed on Au-decorated graphene[J]. Appl Surf Sci 367:259–269

    CAS  Google Scholar 

  3. Giovannetti G, Khomyakov P, Brocks G, Karpan VM, van den Brink J, Kelly P (2008) Doping graphene with metal contacts[J]. Phys Rev Lett 101(2):026803

    CAS  Google Scholar 

  4. Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y, Lifshitz Y, Lee ST, Kang Z, Jiang M (2017) C3N-A 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties[J]. Adv Mater 29(16):1605625

    Google Scholar 

  5. Banerjee P, Pathak B, Ahuja R, Das GP (2016) First principles design of Li functionalized hydrogenated h-BN nanosheet for hydrogen storage[J]. Int J Hydrog Energy 41(32):14437–14446

    CAS  Google Scholar 

  6. Chen D, Zhang X, Tang J, Cui Z, Cui H (2019) Pristine and Cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF6 decompositions based on first-principle study[J]. J Hazard Mater 363:346–357

    CAS  Google Scholar 

  7. Zhou X, Chu W, Zhou Y, Sun W, Xue Y (2018) DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets[J]. Appl Surf Sci 439:246–253

    CAS  Google Scholar 

  8. Cui H, Zhang X, Li Y, Chen D, Zhang Y (2019) First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger[J]. Appl Surf Sci 494:859–866

    CAS  Google Scholar 

  9. Zhou X, Feng W, Guan S, Fu B, Su W, Yao Y (2017) Computational characterization of monolayer C3N: a two-dimensional nitrogen-graphene crystal[J]. J Mater Res 32(15):1–9

    Google Scholar 

  10. Cui H, Kai Z, Zhang Y, Ye H, Chen X (2018) Superior selectivity and sensitivity of C3N sensor in probing toxic gases NO2 and SO2[J]. IEEE Electr Device L 39(2):284–287

    CAS  Google Scholar 

  11. Ma D, Jing Z, Li X, He C, Lu Z, Lu Z, Yang Z, Wang Y (2018) C3N monolayers as promising candidates for NO2 sensors[J]. Sensors Actuat B-Chem 266:664–673

    CAS  Google Scholar 

  12. Cui H, Chen D, Zhang Y, Zhang X (2019) Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory[J]. Sustain Mater Techno 20:e00094

    CAS  Google Scholar 

  13. Yang F, Jung D, Penner RM (2011) Trace detection of dissolved hydrogen gas in oil using a palladium nanowire array[J]. Anal Chem 83(24):9472–9477

    CAS  Google Scholar 

  14. Zhang G, Zhang X, Cheng H, Tang J (2019) Ladder-wise calculation method for z-coordinate of transformer PD source based on planar layout UHF antenna sensors[J]. IEEJ T Electr Electr 15:4

    Google Scholar 

  15. Zhang Q, Zhou Q, Lu Z, Wei Z, Xu L, Gui Y (2018) Recent advances of SnO2-based sensors for detecting fault characteristic gases extracted from power transformer Oil[J]. Front Chem 6:364–364

    Google Scholar 

  16. Mak T, Westerwaal RJ, Slaman M, Schreuders H, Vugt AWV, Victoria M, Boelsma C, Dam B (2014) Optical fiber sensor for the continuous monitoring of hydrogen in oil[J]. Sensors Actuat B-Chem 190:982–989

    CAS  Google Scholar 

  17. Uddin ASMI, Yaqoob U, Chung GS (2016) Dissolved hydrogen gas analysis in transformer oil using Pd catalyst decorated on ZnO nanorod array[J]. Sensors Actuat B-Chem 226:90–95

    CAS  Google Scholar 

  18. Ding J, Li X, Cao J, Sheng L, Yin L, Xu X (2014) New sensor for gases dissolved in transformer oil based on solid oxide fuel cell[J]. Sensors Actuat B-Chem 202(4):232–239

    CAS  Google Scholar 

  19. Zhang X, Dai Z, Chen Q, Tang J (2014) A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes[J]. Phys Scripta 89(6):065803

    CAS  Google Scholar 

  20. Zhang X, Yu L, Wang X, Hu W (2015) Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene[J]. Adv Sci 2(11):612

    Google Scholar 

  21. Zhou Q, Zhang G, Tian S, Zhang X (2020) First-Principles Insight into Pd-Doped ZnO Monolayers as a Promising Scavenger for Dissolved Gas Analysis in Transformer Oil[J]. ACS Omega.

  22. Rani S, Ray S (2019) Detection of gas molecule using C3N island single electron transistor[J]. Carbon 144:235–240

    CAS  Google Scholar 

  23. Cui H, Zhang X, Zhang J, Zhang Y (2019) Nanomaterials-based gas sensors of SF6 decomposed species for evaluating the operation status of high-voltage insulation devices[J]. High Volt 4(4):242–258

    Google Scholar 

  24. Gui Y, Li W, He X, Ding Z, Tang C, Xu L (2020) Adsorption properties of pristine and Co-doped TiO2 (1 0 1) toward dissolved gas analysis in transformer oil[J]. Appl Surf Sci 507:145163

    CAS  Google Scholar 

  25. Zhang D, Wu J, Li P, Cao Y (2017) Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation[J]. J Mater Chem A 5(39):20666–20677

    CAS  Google Scholar 

  26. Zhao B, Li CY, Liu LL, Zhou B, Zhang QK, Chen ZQ, Tang Z (2016) Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: a first-principles study[J]. Appl Surf Sci 382:280–287

    CAS  Google Scholar 

  27. Sharma A, Anu KMS, Husain M, Khan MS, Srivastava A (2018) Sensing of CO and NO on Cu-doped MoS2 monolayer based single electron transistor: a first principles study [J]. IEEE Sens J 99:2853–2860

    Google Scholar 

  28. Kadioglu Y, Gökoğlu G, Üzengi AO (2017) Molecular adsorption properties of CO and H2O on Au-, Cu-, and AuxCuy-doped MoS2 monolayer[J]. Appl Surf Sci 425:246–253

    CAS  Google Scholar 

  29. Delley B (2000) From molecules to solids with the DMol3 approach[J]. J Chem Phys 113(18):7756–7764

    CAS  Google Scholar 

  30. Cui H, Yan C, Jia P, Cao W (2020) Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: a first-principles study[J]. Appl Surf Sci 512:145759

    CAS  Google Scholar 

  31. Tkatchenko A, Distasio RA Jr, Head-Gordon M, Scheffler M (2009) Dispersion-corrected Møller-Plesset second-order perturbation theory[J]. J Chem Phys 131(9):171

    Google Scholar 

  32. Delley B (2002) Hardness conserving semilocal pseudopotentials[J]. Phys Rev B 66(15):155125

    Google Scholar 

  33. Cui H, Zhang X, Zhang G, Tang J (2019) Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method[J]. Appl Surf Sci 470:1035–1042

    CAS  Google Scholar 

  34. Zhang X, Gui Y, Xiao H, Zhang Y (2016) Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory[J]. Appl Surf Sci 379:47–54

    CAS  Google Scholar 

  35. Wan Q, Chen X, Gui Y (2020) First-principles insight into a Ru-doped SnS2 monolayer as a promising biosensor for exhale gas analysis[J]. ACS Omega 5(15):8919–8926

    CAS  Google Scholar 

  36. Cui H, Jia P, Peng X (2020) Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: a first-principles study[J]. Appl Surf Sci 513:145863

    CAS  Google Scholar 

  37. Makaremi M, Mortazavi B, Singh CV (2017) Adsorption of metallic, metalloidic, and nonmetallic adatoms on two-dimensional C3N[J]. J Phys Chem C 121(34):18575–18583

    CAS  Google Scholar 

  38. Wang H, Hong W, Yang J (2017) C3N: a two dimensional semiconductor material with high stiffness, superior stability and bending poisson's effect[J]

  39. Ma D, Zhang J, Tang Y, Fu Z, Yang Z, Lu Z (2018) Repairing single and double atomic vacancies in a C3N monolayer with CO or NO molecules: a first-principles study[J]. Phys Chem Chem Phys 20(19):13517–13527

    CAS  Google Scholar 

  40. Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118[J]. Chem 15(1):186–197

    Google Scholar 

  41. Zhang X, Zhang J, Jia Y, Xiao P, Tang J (2012) TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2[J]. Sensors 12(3):3302–3313

    CAS  Google Scholar 

  42. He X, Gui Y, Xie J, Liu X, Wang Q, Tang C (2020) A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT[J]. Appl Surf Sci 500:144030

    CAS  Google Scholar 

  43. Zhang X, Yang B, Wang X, Luo C (2012) Effect of plasma treatment on multi-walled carbon nanotubes for the detection of H2S and SO2[J]. Sensors 12(7):9375–9385

    CAS  Google Scholar 

  44. Hammond JW, Liu CC (2001) Silicon based microfabricated tin oxide gas sensor incorporating use of Hall effect measurement[J]. Sensors Actuat B-Chem 81(1):25–31

    CAS  Google Scholar 

  45. Gholami S, Rad AS, Heydarinasab A, Ardjmand M (2016) Adsorption of adenine on the surface of nickel-decorated graphene; a DFT study[J]. J Alloys Comp 686:662–668

    CAS  Google Scholar 

  46. Rao GS, Hussain T, Islam MS, Sagynbaeva M, Gupta D, Panigrahi P, Ahuja R (2016) Adsorption mechanism of graphene-like ZnO monolayer towards CO2 molecules: enhanced CO2 capture[J]. Nanotechnology 27(1):015502

    CAS  Google Scholar 

  47. Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect[J]. Nano Lett 9(10):3430–3434

    CAS  Google Scholar 

  48. Qazi M, Koley G, Park S, Vogt T (2007) NO2 detection by adsorption induced work function changes in In2O3 thin films[J]. Appl Phys Lett 91(4):043113

    Google Scholar 

  49. Wang DW, Wang XH, Yang AJ, Chu JF, Lv PL, Liu Y, Rong MZ (2017) MoTe2: a promising candidate for SF6 decomposition gas sensors with high sensitivity and selectivity[J]. IEEE Electr Device L 99:1

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from National Natural Science Foundation of China (No. 41774118 and 61906160), Fundamental Science and Advanced Technology Research Foundation of Chongqing (No. cstc2018jcyjA0867), Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory (No. 19kfhk03) and Open Research Fund Program of Data Recovery Key Laboratory of Sichuan Province (No. DRN19015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Cui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Liu, C., Jia, P. et al. Sensing behavior of Cu-embedded C3N monolayer upon dissolved gases in transformer oil: a first-principles study. Carbon Lett. 31, 489–496 (2021). https://doi.org/10.1007/s42823-020-00179-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00179-1

Keywords

Navigation