Skip to main content
Log in

Rice straw derived activated carbon-based Ni-containing electrocatalyst for methanol oxidation

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In the current work, we have developed a new composite catalyst for methanol oxidation based on Ni and/or NiO incorporated in activated carbon (AC) derived  from agricultural wastes (Rice straw). The new electrocatalysts based on nickel-activated carbon (Ni/AC) and nickel oxide-activated carbon (NiO/AC) composites were prepared by electroless plating technique. Physico-chemical characteristics of the composites such as structure, composition and morphology were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and particle size analyzer. The electrochemical activity of the prepared composites towards methanol electrooxidation reaction (MOR) has been evaluated under alkaline conditions by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. Among the examined electrodes, the electrochemical performance of NiO/AC preceded either Ni/AC or Ni free AC and showed better stability. The dispersion of different forms of Ni in activated carbon in case of NiO/AC electrode is predicted to give rise to the increase in electrocatalytic activity in the potential range under study and makes it more resistant to poisoning by the byproduct of methanol oxidation. The effect of changing methanol concentrations and scan rates on the electrochemical characteristics of the modified electrode was studied and it was found that the diffusion process is controlled by methanol rather than OH ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baratz B, Ouellette R., Park W, Stokes B (1981) Survey of alcohol fuel technology. In: Hassenzahl WV (ed) Mechanical, thermal, and chemical storage of energy. Hutchinson Ross, Pennsylvaniapp, pp 216

  2. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14

    CAS  Google Scholar 

  3. Arico AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel cells 1(2):133–161

    CAS  Google Scholar 

  4. Lamy C, Léger J-M, Srinivasan S (2002) Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology. Modern aspects of electrochemistry. Springer, Berlin, pp 53–118

    Google Scholar 

  5. Girishkumar G, Vinodgopal K, Kamat PV (2004) Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J Phys Chem B 108(52):19960–19966

    CAS  Google Scholar 

  6. Huang HX, Chen SX (2008) Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation. J Power Source 175(1):166–174

    CAS  Google Scholar 

  7. Liu J, Ye J, Xu C, Tong Y (2008) Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium. J Power Source 177(1):67–70

    CAS  Google Scholar 

  8. Masud J, Alam MT, Awaludin Z, El-Deab MS, Okajima T, Ohsaka T (2012) Electrocatalytic oxidation of methanol at tantalum oxide-modified Pt electrodes. J Power Source 220:399–404

    CAS  Google Scholar 

  9. Antolini E, Salgado JR, Gonzalez ER (2006) The methanol oxidation reaction on platinum alloys with the first row transition metals: the case of Pt–Co and–Ni alloy electrocatalysts for DMFCs: a short review. Appl Catal B 63(1–2):137–149

    CAS  Google Scholar 

  10. Barakat NA, Motlak M (2014) CoxNiy-decorated graphene as novel, stable and super effective non-precious electro-catalyst for methanol oxidation. Appl Catal B 154:221–231

    Google Scholar 

  11. Wang HD, Wang XF, Su F, Li JS, Zhang LC, Sang XJ, Zhu ZM (2019) Carboxyethyltin and transition metal co-functionalized tungstoantimonates composited with polypyrrole for enhanced electrocatalytic methanol oxidation. Dalton Trans 48(9):2977–2987

    CAS  Google Scholar 

  12. Marinas J, Campelo J, Luna D (1986) New supported metallic nickel systems. In: Cerveny L (ed.) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 411–457

    Google Scholar 

  13. Amin RS, Hameed RMA, El-Khatib KM, Youssef ME, Elzatahry AA (2012) Pt–NiO/C anode electrocatalysts for direct methanol fuel cells. Electrochim Acta 59:499–508

    CAS  Google Scholar 

  14. Casella I, Desimoni E, Cataldi T (1991) Study of a nickel-catalysed glassy carbon electrode for detection of carbohydrates in liquid chromatography and flow injection analysis. Anal Chim Acta 248(1):117–125

    CAS  Google Scholar 

  15. Hui BS, Huber CO (1982) Amperometric detection of amines and amino acids in flow injection systems with a nickel oxide electrode. Anal Chim Acta 134:211–218

    CAS  Google Scholar 

  16. Tong X, Qin Y, Guo X, Moutanabbir O, Ao X, Pippel E, Knez M (2012) Enhanced catalytic activity for methanol electro-oxidation of uniformly dispersed nickel oxide nanoparticles—carbon nanotube hybrid materials. Small 8(22):3390–3395

    CAS  Google Scholar 

  17. Bode H, Dehmelt K, Witte J (1966) Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat. Electrochim Acta 11(8):1079

    CAS  Google Scholar 

  18. Van der Ven A, Morgan D, Meng YS, Ceder G (2006) Phase stability of nickel hydroxides and oxyhydroxides. J Electrochem Soc 153(2):A210–A215

    Google Scholar 

  19. Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M (Ni Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat Mater 11(6):550

    CAS  Google Scholar 

  20. Rahim MAA, Hameed RMA, Khalil MW (2004) Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J Power Sources 134(2):160–169

    Google Scholar 

  21. Risbud M, Baxter S, Skyllas-Kazacos M (2012) Preparation of nickel modified carbon fibre electrodes and their application for methanol oxidation. Open Fuels Energy Sci J 5:9–20

    CAS  Google Scholar 

  22. Kim MS, Hwang TS, Kim KB (1997) A study of the electrochemical redox behavior of electrochemically precipitated nickel hydroxides using electrochemical quartz crystal microbalance. J Electrochem Soc 144(5):1537–1543

    CAS  Google Scholar 

  23. Taraszewska J, Rosłonek GJ (1994) Electrocatalytic oxidation of methanol on a glassy carbon electrode modified by nickel hydroxide formed by ex situ chemical precipitation. J Electroanal Chem 364(1–2):209–213

    CAS  Google Scholar 

  24. Cardoso WS, Dias VLN, Costa WM, Rodrigues IA, Marques EP, Sousa AG, Boaventura J, Bezerra CW, Song C, Liu H, Zhang J (2009) Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: preparation and catalytic activity towards methanol/ethanol oxidation. J Appl Electrochem 39(1):55–64

    CAS  Google Scholar 

  25. Zheng L, Zhang J-Q, Song J-F (2009) Ni (II)–quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose. Electrochim Acta 54(19):4559–4565

    CAS  Google Scholar 

  26. Badawy WA, Fadl-Allah SA, Fathi AM (2016) Influence of Ni–Cu–P deposits on the surface characteristics of anodized Al, Al2014 and Al7075. Zeitschrift für Physikalische Chemie 230(1):35–50

    CAS  Google Scholar 

  27. Huang C-C, Lo CC, Tseng YC, Liu CM, Chen C (2011) Magnetostructural phase transition in electroless-plated Ni nanoarrays. J Appl Phys 109(11):113905

    Google Scholar 

  28. Jha H, Kikuchi T, Sakairi M, Takahashi H (2007) Area-selective microscale metallization on porous anodic oxide film of aluminium. Electrochem Commun 9(7):1596–1601

    CAS  Google Scholar 

  29. Dias JM, Alvim-Ferraz MCM, Almeida MF, Rivera-Utrilla J, Sánchez-Polo M (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manag 85(4):833–846

    CAS  Google Scholar 

  30. El-Kady AA, Carleer R, Yperman J, Farah JY (2013) Optimum conditions for adsorption of lindane by activated carbon derived from date stones. World Appl Sci J 27:269–279

    Google Scholar 

  31. Kalyani P, Anitha A, Darchen A (2013) Activated carbon from grass—a green alternative catalyst support for water electrolysis. Int J Hydrog Energy 38(25):10364–10372

    CAS  Google Scholar 

  32. Xing J, Zou Z, Guo K, Xu C (2018) The effect of phosphating time on the electrocatalytic activity of nickel phosphide nanorod arrays grown on Ni foam. J Mater Res 33(5):556–567

    CAS  Google Scholar 

  33. El-Kady AA, Abdel Ghafar HH, Ibrahim MB, Abdel-Wahhab MA (2013) Utilization of activated carbon prepared from agricultural waste for the removal of organophosphorous pesticide from aqueous media. Desalin Water Treat 51(37–39):7276–7285

    CAS  Google Scholar 

  34. Carneiro JF, Rocha RS, Hammer P, Bertazzoli R, Lanza MRV (2016) Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta2O5. Appl Catal A 517:161–167

    CAS  Google Scholar 

  35. Wang H, Cheng P, Wang Y (2018) Advanced electrocatalytic performance of activated carbon prepared from asphalt. Int J Electrochem Sci 13(4):3257–3266

    CAS  Google Scholar 

  36. El-Kady AA, Carleer R, Yperman J, D’Haen J, Abdel-Ghafar HH (2016) Kinetic and adsorption study of Pb(II) towards different treated activated carbons derived from olive cake wastes. Desalin Water Treat 57:8561–8574

    CAS  Google Scholar 

  37. Tong YY, Gu CD, Zhang JL, Tang H, Wang XL, Tu JP (2016) Thermal growth of NiO on interconnected Ni–P tube network for electrochemical oxidation of methanol in alkaline medium. Int J Hydrog Energy 41(15):6342–6352

    CAS  Google Scholar 

  38. Fierro V, Muňiz G, Basta AH, El-Saied H, Celzard A (2010) Rice straw as precursor of activated carbons: activation with ortho-phosphoric acid. J Hazard Mater 181:27–34

    CAS  Google Scholar 

  39. Marsh H, Rodríguez-Reinoso F (2006) Activation processes (chemical). In: Activated Carbon. Elsevier Science Ltd, Oxford, pp 322–365

  40. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    CAS  Google Scholar 

  41. Suresh P, Vijaya JJ, Kennedy LJ (2015) Photocatalytic degradation of textile dyeing wastewater through microwave synthesized Zr–AC, Ni–AC and Zn–AC. Trans Nonferrous Metals Soc China 25(12):4216–4225

    CAS  Google Scholar 

  42. Khayoon M, Hameed B (2013) Solventless acetalization of glycerol with acetone to fuel oxygenates over Ni–Zr supported on mesoporous activated carbon catalyst. Appl Catal A 464:191–199

    Google Scholar 

  43. Atieh MA, Bakather OY, Al-Tawbini B, Bukhari AA, Abuilaiwi FA, Fettouhi MB (2010) Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg Chem Appl 2010:1–9

    Google Scholar 

  44. Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution. J Hazard Mater 166(2–3):1514–1521

    CAS  Google Scholar 

  45. Abioyea AM, Farajia S, Ania FN (2017) Effect of heat treatment on the characteristics of electroless activated carbon–nickel oxide nanocomposite. Jurnal Tekvologi 79(7–3):61–67

    Google Scholar 

  46. El-Shafei AA (1999) Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J Electroanal Chem 471(2):89

    CAS  Google Scholar 

  47. Singh R, Singh A (2009) Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: methanol electrooxidation in 1 M KOH. Int J Hydrogen Energy 34(4):2052–2057

    CAS  Google Scholar 

  48. Fleischmann M, Korinek K, Pletcher D (1972) The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. J Chem Soc Perkin Trans 2(10):1396–1403

    Google Scholar 

  49. Hameed RA, El-Khatib K (2010) Ni–P and Ni–Cu–P modified carbon catalysts for methanol electro-oxidation in KOH solution. Int J Hydrog Energy 35(6):2517–2529

    Google Scholar 

  50. Raoof JB, Ojani R, Hosseini SR (2013) An electrochemical investigation of methanol oxidation on nickel hydroxide nanoparticles. S Afr J Chem 66:47–53

    CAS  Google Scholar 

  51. Ortiz R, Márquez OP, Márquez J, Gutiérrez C (1996) Necessity of oxygenated surface species for the electrooxidation of methanol on iridium. J Phys Chem 100(20):8389–8396

    CAS  Google Scholar 

  52. Mahapatra S, Datta J (2011) Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium. Int J Electrochem. https://doi.org/10.4061/2011/563495

    Article  Google Scholar 

  53. Golikand AN, Shahrokhian S, Asgari M, Maragheh MG, Irannejad L, Khanchi A (2005) Electrocatalytic oxidation of methanol on a nickel electrode modified by nickel dimethylglyoxime complex in alkaline medium. J Power Sources 144(1):21–27

    CAS  Google Scholar 

  54. Liu J, Du S, Wei L, Liu H, Tian Y, Chen Y (2006) Template-free synthesis of NiO hollow microspheres covered with nanoflakes. Mater Lett 60(29–30):3601–3604

    CAS  Google Scholar 

  55. Hassan H, Tammam RH (2018) Preparation of Ni-metal oxide nanocomposites and their role in enhancing the electro-catalytic activity towards methanol and ethanol. Solid State Ionics 320:325–338

    CAS  Google Scholar 

  56. Xu C, Tian Z, Shen P (2008) Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53(5):2610–2618

    CAS  Google Scholar 

  57. Wu G, Li L, Xu B-Q (2004) Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation. Electrochim Acta 50(1):1–10

    CAS  Google Scholar 

  58. Fathi AM, Abdel-Hameed SAM, Margha FH, Ghany NAA (2016) Electrocatalytic oxygen evolution on nanoscale crednerite (CuMnO2) composite electrode. Z Phys Chem 230(1):35–50

    Google Scholar 

  59. Gu CD, Huang ML, Ge X, Zheng H, Wang XL, Tu JP (2014) NiO electrode for methanol electro-oxidation: mesoporous vs. nanoparticulate. Int J Hydrog Energy 39(21):10892–10901

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahlam M. Fathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, A.M., Handal, H.T. & El-Kady, A.A. Rice straw derived activated carbon-based Ni-containing electrocatalyst for methanol oxidation. Carbon Lett. 31, 253–267 (2021). https://doi.org/10.1007/s42823-020-00160-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00160-y

Keywords

Navigation