Skip to main content
Log in

Carbonization of oriented poly(vinyl alcohol) fibers impregnated with potassium bisulfate

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The structural transformationss of oriented poly(vinyl alcohol) (PVA) fibers impregnated with potassium bisulfate (PBS) were studied in detail on the way from PVA precursor fibers till carbonized at a temperature of 1000 °C fibers. It has been shown that the impregnation of PVA fibers with a sulfur-containing compound (PBS) is an efficient technique to decrease the thermoplasticity of PVA fibers during heat treatment at high temperatures in air and argon and contributes to a high yield of coke residue after heat treatment up to 1000 °C. TMA, TGA, DSC, mass spectrometry, FTIR, Raman spectroscopy, SEM, WAXS and SAXS were used to study the structural transformations of oriented PVA fibers impregnated with PBS at the stages of their preliminary thermal stabilization (215 °C), thermal stabilization (215–400 °C) and carbonization (400–1000 °C). A reaction scheme has been proposed that fully describes carbonization chemistry in the entire studied temperature range. The processing temperature of 215 °C was found to be optimal for preliminary thermal stabilization of PVA fibers impregnated with PBS. The heat treatment in an inert medium can be recommended as the optimal for thermal stabilization of fibers impregnated with PBS. The characteristics of the carbonized PVA fibers, such as strength, modulus and electrical conductivity, were close to the characteristics of commercial cellulose-based carbon fibers yarns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang J, Terrones M, Park CR, Mukherjee R, Monthioux M, Koratkar N et al (2016) Carbon science in 2016: Status, challenges and perspectives. Carbon 98:708–732. https://doi.org/10.1016/j.carbon.2015.11.060

    Article  CAS  Google Scholar 

  2. Morgan P (2005) Carbon fibers and their composites. Taylor and Francis, Boca Raton

    Book  Google Scholar 

  3. Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Edit 53:5262–5298. https://doi.org/10.1002/anie.201306129

    Article  CAS  Google Scholar 

  4. Zhang D, Sun Q (1996) Structure and properties development during the conversion of polyethylene precursors to carbon fibers. J Appl Polym Sci 62:367–373. https://doi.org/10.1002/(SICI)1097-4628(19961010)62:2%3c367:AID-APP11%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  5. Hunt MA, Saito T, Brown RH, Kumbhar AS, Naskar AK (2012) Patterned functional carbon fibers from polyethylene. Adv Mater 24:2386–2389. https://doi.org/10.1002/adma.201104551

    Article  CAS  Google Scholar 

  6. Kim KW, Lee HM, Kim BS, Hwang SH, Kwac LK, An KH et al (2015) Preparation and thermal properties of polyethylene-based carbonized fibers. Carbon Lett 16:62–66. https://doi.org/10.5714/CL.2015.16.1.062

    Article  CAS  Google Scholar 

  7. Kim JW, Lee JS (2015) Preparation of carbon fibers from linear low density polyethylene. Carbon 94:524–530. https://doi.org/10.1016/j.carbon.2015.06.074

    Article  CAS  Google Scholar 

  8. Wortberg G, De Palmenaer A, Beckers M, Seide G, Gries T (2015) Polyethylene-based carbon fibers by the use of sulphonation for stabilization. Fibers 3:373–379. https://doi.org/10.3390/fib3030373

    Article  CAS  Google Scholar 

  9. De Palmenaer A, Wortberg G, Drissen F, Seide G, Gries T (2015) Production of polyethylene based carbon fibres. Chem Eng Trans 43:1699–1704. https://doi.org/10.3303/CET1543284

    Article  Google Scholar 

  10. Choi D, Kil H-S, Lee S (2019) Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies. Carbon 142:610–649. https://doi.org/10.1016/j.carbon.2018.10.028

    Article  CAS  Google Scholar 

  11. Kaneko M, Sato H (2005) Sulphonation of poly(propylene)films with fuming sulfuric acid. Macromol Chem Phys 206:456–463. https://doi.org/10.1002/macp.200400312

    Article  CAS  Google Scholar 

  12. Chen XY, Patton J, Barton B, Lin JC, Behr M, Lysenko Z (2017) In situ raman spectroscopy monitoring of the reaction of sulfur trioxide with polyethylene fibers in chlorinated solvents. Spectroscopy 32:42–47

    CAS  Google Scholar 

  13. Younker JM, Saito T, Hunt MA, Naskar AK, Beste A (2013) Pyrolysis pathways of sulfonated polyehtylene, an alternative carbon fibre precursor. J Am Chem Soc 135:6130–6141. https://doi.org/10.1021/ja3121845

    Article  CAS  Google Scholar 

  14. Barton BE, Patton J, Hukkanen E, Behr M, Lin J-C, Beyer S et al (2015) The chemical transformation of hydrocarbons to carbon using SO3 sources. Carbon 94:465–471. https://doi.org/10.1016/j.carbon.2015.07.029

    Article  CAS  Google Scholar 

  15. Shindo A, Nakanishi Y, Soma I (1969) Highly crystallite-oriented carbon fibers from polymeric fibers. Appl Polym Symp 9:305–313

    Google Scholar 

  16. Shindo A, Sawada Y (1980) Orientation structure in transverse sections of carbon fibers from dehydrated polyvinyl alcohol. Carbon 18:419–425. https://doi.org/10.1016/0008-6223(80)90034-2

    Article  CAS  Google Scholar 

  17. Tolkachev AV, Druzhinina TV, Nazar'ina LA (1997) Thermal properties of polyvinyl alcohol fibres in the presence of a phosphorus-containing catalyst. Fibre Chem 29:26–30. https://doi.org/10.1007/BF02430682

    Article  CAS  Google Scholar 

  18. Savel'eva EYu, Druzhinina TV (2003) Effect of phosphorus and chromium compounds on thermooxidation of polyvinyl alcohol fibres. Fibre Chem 35:17–20. https://doi.org/10.1023/A:1023815420629

    Article  CAS  Google Scholar 

  19. Savel'eva EYu, Druzhinina TV, Kharchenko IM (2004) Fabrication of carbon fibre materials made from polyvinyl alcohol fibre impregnated with phosphorus compounds. Fibre Chem 36:26–29. https://doi.org/10.1023/B:FICH.0000025534.44293.f6

    Article  CAS  Google Scholar 

  20. Tovmash AV, Polevov VN, Mamagulashvili VG, Chernyaeva GA, Shepelev AD (2005) Fabrication of sorption-filtering nonwoven material from ultrafine polyvinyl alcohol carbonized fibers by electrospinning. Fiber Chem 37:187–191. https://doi.org/10.1007/s10692-005-0077-6

    Article  CAS  Google Scholar 

  21. Zhang SJ, Quing H, Feng H (2006) PVA based activated carbon fibers with lotus root like axially porous structure. Carbon 44:2059–2068. https://doi.org/10.1016/j.carbon.2005.12.047

    Article  CAS  Google Scholar 

  22. Bin Y, Chen Q, Nakamura Y, Tsuda K, Matsuo M (2007) Preparation and characterization of carbon films prepared from poly(vinyl alcohol) containing metal oxide and nanofibers with iodine pretreatment. Carbon 45:1330–1339. https://doi.org/10.1016/j.carbon.2007.01.007

    Article  CAS  Google Scholar 

  23. Zhang SJ, Feng HM, Wang JP, Yu HQ (2008) Structure evolution and optimization in the fabrication of PVA-based activated carbon fibers. J Colloid Interf Sci 321:96–102. https://doi.org/10.1016/j.jcis.2008.01.012

    Article  CAS  Google Scholar 

  24. Feng HM, Zhang SJ, Chen YZ, Ding YW, Yu HQ, Lam MHW (2009) Fabrication and evaluation of mesoporous poly(vinyl alcohol)-based activated carbon fibers. Ind Eng Chem Res 48:3398–3402. https://doi.org/10.1021/ie8012852

    Article  CAS  Google Scholar 

  25. Nakano Y, Matsuo M (2010) Carbonized properties of iodine-incorporated poly(vinyl alcohol) composite films prepared by gelation/crystallization from solution. Langmuir 26:2857–2863. https://doi.org/10.1021/la900957t

    Article  CAS  Google Scholar 

  26. Fatema UK, Tomizawa C, Harada M, Gotoh Y (2011) Iodine-aided fabrication of hollow carbon fibers from solid poly(vinyl alcohol) fibers. Carbon 49:2158–2161. https://doi.org/10.1177/0040517510385175

  27. Fatema UK, Ahmed JU, Uemura K, Gotoh Y (2011) Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers. Text Res J 81:659–672. https://doi.org/10.1177/0040517510385175

    Article  CAS  Google Scholar 

  28. Druzhinina TV, Kharchenko IM (2011) General characteristics of chemical and structural transformations of polyvinyl alcohol fibre in conditions of high-temperature treatment. Fibre Chem 42:293–296. https://doi.org/10.1007/s10692-011-9272-9

    Article  CAS  Google Scholar 

  29. Penev ES, Artyukhov VI, Yakobson BI (2015) Basic structural units in carbon fibers: atomistic models and tensile behavior. Carbon 85:72–78. https://doi.org/10.1016/j.carbon.2014.12.067

    Article  CAS  Google Scholar 

  30. Petkieva DV, Alkhanishvili GG, Kurkin TS, Ozerin AN, Perov NS, Rudakova TA (2013) Change in the structure of oriented poly(vinyl alcohol) fibers impregnated with potassium bisulfate during heat treatment in air. Polym Sci Ser A 55:121–126. https://doi.org/10.1134/S0965545X13020077

    Article  CAS  Google Scholar 

  31. Petkieva DV, Golubev EK, Kurkin TS, Kechek’yan AS, Rudakova TA, Beshenko MA, Ozerin AN (2017) Carbonized fibers based on polyvinyl alcohol. Dokl Chem 477:274–277. https://doi.org/10.1134/S0012500817120035

  32. Iwashita N, Park CR, Fujimoto H, Shiraishi M, Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42:701–714. https://doi.org/10.1016/j.carbon.2004.05.027

    Article  CAS  Google Scholar 

  33. Cho JD, Lyoo WS, Chvalun SN, Blackwell J (1999) X-ray analysis and molecular modeling of poly(vinyl alcohol)s with different stereoregularities. Macromolecules 32:6236–6241. https://doi.org/10.1021/ma9908402

    Article  CAS  Google Scholar 

  34. Lidin RA, Molochko VA, Andreeva LL (1996) Reactivity of inorganic substances handbook. Revised and augmented edition. Begell House Inc., New York

    Google Scholar 

  35. Gillam AE, Stern ES, Timmons CJ (1970) Gillam and Stern's introduction to electronic absorption spectroscopy in organic chemistry. Edward Arnold, London

    Google Scholar 

  36. Tolkachev AV, Druzhinina TV, Nazar'ina LA, Mosina NYu (1997) Oxidation of polyvinyl alcohol fibres in the presence of phosphorus-containing compounds. Fibre Chem 29:97–102. https://doi.org/10.1007/BF02430699

    Article  CAS  Google Scholar 

  37. Fitzer E, Frohs W, Heine M (1986) Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 24:387–395. https://doi.org/10.1016/0008-6223(86)90257-5

    Article  CAS  Google Scholar 

  38. Colthup N, Daly L, Wiberley S (1990) Introduction to infrared and raman spectroscopy. Academic Press, Boston

    Google Scholar 

  39. Wallace W (2020) Mass spectra. In: Linstrom P, Mallard W (eds) NIST chemistry webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4D303

    Chapter  Google Scholar 

  40. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43:1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  41. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  42. Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563. https://doi.org/10.1021/cm00011a018

    Article  CAS  Google Scholar 

  43. Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1994) Raman microprobe studies on carbon materials. Carbon 32:1523–1532. https://doi.org/10.1016/0008-6223(94)90148-1

    Article  CAS  Google Scholar 

  44. Dippel B, Jander H, Heintzenberg J (1999) NIR FT Raman spectroscopic study of flame soot. Phys Chem Chem Phys 1:4707–4712. https://doi.org/10.1039/A904529E

    Article  CAS  Google Scholar 

  45. Ferrari AC, Robertson J (2001) Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond. Phys Rev B 63:121405(R). https://doi.org/10.1103/PhysRevB.63.121405

    Article  CAS  Google Scholar 

  46. Thomas PS, Guerbois JP, Russell GF, Briscoe BJ (2001) FTIR study of the thermal degradation of poly(vinyl alcohol). J Therm Anal Calorim 64:501–508. https://doi.org/10.1023/A:1011578514047

    Article  CAS  Google Scholar 

  47. Holland BJ, Hay JN (2001) The thermal degradation of poly(vinyl alcohol). Polymer 42:6775–6783. https://doi.org/10.1016/S0032-3861(01)00166-5

    Article  CAS  Google Scholar 

  48. Quan Y, Liu Q, Shilong Z, Shuai Z (2018) Comparison of the morphology, chemical composition and microstructure of cryptocrystalline graphite and carbon black. Appl Surf Sci 445:335–341. https://doi.org/10.1016/j.apsusc.2018.03.182

    Article  CAS  Google Scholar 

  49. Patent application: 2019141958, 17.12.2019

Download references

Funding

This study was funded by Enikolopov Institute of Synthetic Polymeric Materials RAS according to the Research Project # 115060840012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ozerin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petkieva, D., Ozerin, A., Kurkin, T. et al. Carbonization of oriented poly(vinyl alcohol) fibers impregnated with potassium bisulfate. Carbon Lett. 30, 637–650 (2020). https://doi.org/10.1007/s42823-020-00135-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00135-z

Keywords

Navigation