Skip to main content
Log in

Molecular dynamics simulation-based understanding of the structure and property of amyloid proteins at multiple length scales

  • Review
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

Amyloid proteins, which are known as unstructured protein, are able to self-aggregate to form amyloid fibrils, which are related to pathogenesis of various diseases ranging from neurodegenerative diseases to type 2 diabetes. To gain insight into the underlying mechanism of protein aggregation-driven pathogenesis and to develop the molecular-level therapeutics, it is of great importance to understand the structure, aggregation behavior, and properties of amyloid proteins. In this article, we discuss the current state-of-arts in understanding the structure and properties of amyloid proteins and the future directions in studying the amyloidogenic proteins. Specifically, we show recent efforts that have been made to study the structure and properties of amyloidogenic at multiple length scales ranging from amyloid monomers to amyloid fibrils based on molecular dynamics simulations. The molecular dynamics-based computation has allowed for understanding not only how the structure and aggregation propensity of amyloid monomers but also how the mechanical properties of amyloid fibrils are determined. This suggests that molecular dynamics-based computation will play a pivotal role in unveiling the molecular-level underlying mechanism of protein aggregation-driven pathogenesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

© American Chemical Society (2015)

Fig. 2

© Royal Society of Chemistry (2021)

Fig. 3

© Royal Society of Chemistry

Fig. 4

Similar content being viewed by others

References

  1. M.M. Babu, R. van der Lee, N.S. de Groot, J. Gsponer, Intrinsically disordered proteins: regulation and disease. Curr. Opin. Struct. Biol. 21, 1–9 (2011)

    Article  Google Scholar 

  2. S. Bhattacharya, L. Xu, D. Thompson, Revisiting the earliest signatures of amyloidogenesis: roadmaps emerging from computational modeling and experiment. WIRES Comput. Mol. Sci. 8, e1359 (2018)

    Article  Google Scholar 

  3. G. Merlini, V. Bellotti, Molecular mechanisms of amyloidosis. N. Eng. J. Med. 349, 583–596 (2003)

    Article  Google Scholar 

  4. J.W.M. Hoppener, B. Ahren, C.J.M. Lips, Islet amyloid and type 2 diabetes mellitus. N. Eng. J. Med. 343, 411–419 (2000)

    Article  Google Scholar 

  5. C. Rapezzi, C.C. Quarta, L. Riva, S. Longhi, I. Gallelli, M. Lorenzini et al., Transthyretin-related amyloidoses and the heart: a clinical overview. Nat. Rev. Cardiol. 7, 398–408 (2010)

    Article  Google Scholar 

  6. C. Soto, Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 49–60 (2003)

    Article  Google Scholar 

  7. I. Cherny, E. Gazit, Amyloids: not only pathological agents but also ordered nanomaterials. Angew. Chem. Int. Ed. 47, 4062–4069 (2008)

    Article  Google Scholar 

  8. D.S. Eisenberg, M.R. Sawaya, Structural studies of amyloid proteins at the molecular level. Annu. Rev. Biochem. 86, 69–95 (2017)

    Article  Google Scholar 

  9. F. Chiti, C.M. Dobson, Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)

    Article  Google Scholar 

  10. B.H. Toyama, J.S. Weissman, Amyloid structure: conformational diversity and consequences. Annu. Rev. Biochem. 80, 557–585 (2011)

    Article  Google Scholar 

  11. J. Adamcik, R. Mezzenga, Amyloid polymorphism in the protein folding and aggregation energy landscape. Angew. Chem. Int. Ed. 57, 8370–8382 (2018)

    Article  Google Scholar 

  12. A.C.M. Ferreon, C.R. Moran, J.C. Ferreon, A. Deniz, Alteration of the alpha-synuclein folding landscape by a mutation related to Parkinson’s disease. Angew. Chem. Int. Ed. 49, 3469–3472 (2010)

    Article  Google Scholar 

  13. S.C. Lee, Y. Hashim, J.K.Y. Li, G.T.C. Ko, J.A.J.H. Critchley, C.S. Cockram et al., The islet amyloid polypeptide (amylin) gene S20G mutation in Chinese subjects: evidence for associations with type 2 diabetes and cholesterol levels. Clinic. Endocrinol. 54, 541–546 (2001)

    Article  Google Scholar 

  14. S. Sakagashira, T. Sanke, T. Hanabusa, H. Shimomura, S. Ohagi, K.Y. Kumagaye et al., Missense mutation of amylin gene (S20G) in Japanese NIDDM patients. Diabetes 45, 1279–1281 (1996)

    Article  Google Scholar 

  15. A. Abedini, F. Meng, D.P. Raleigh, A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor. J. Am. Chem. Soc. 129, 11300–11301 (2007)

    Article  Google Scholar 

  16. P. Cao, L.-H. Tu, A. Abedini, O. Levsh, R. Akter, V. Patsalo et al., Sensitivity of amyloid formation by human islet amyloid polypeptide to mutations at residue 20. J. Mol. Biol. 421, 282–295 (2012)

    Article  Google Scholar 

  17. P. Westermark, U. Engström, K.H. Johnson, G.T. Westermark, C. Betsholtz, Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl. Acad. Sci. U.S.A. 87, 5036–5040 (1990)

    Article  Google Scholar 

  18. T.P.J. Knowles, M.J. Buehler, Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechol. 6, 469–479 (2011)

    Article  Google Scholar 

  19. B. Choi, T. Kim, S.W. Lee, K. Eom, Nanomechanical characterization of amyloid fibrils using single-molecule experiments and computational simulations. J. Nanomater. 2016, 5873695 (2016)

    Article  Google Scholar 

  20. K. Eom, Computer simulation of protein materials at multiple length acales: from single proteins to protein assemblies. Multiscale Sci. Eng. 1, 1–25 (2019)

    Article  Google Scholar 

  21. A.W.P. Fitzpatrick, S.T. Park, A.H. Zewail, Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. Proc. Natl. Acad. Sci. U.S.A. 110, 10976–10981 (2013)

    Article  Google Scholar 

  22. M.F.M. Engel, L. Khemtemourian, C.C. Kleijer, H.J.D. Meeldijk, J. Jacobs, A.J. Verkleij et al., Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc. Natl. Acad. Sci. U.S.A. 105, 6033–6038 (2008)

    Article  Google Scholar 

  23. Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)

    Article  Google Scholar 

  24. P. Hanggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  MathSciNet  Google Scholar 

  25. M.M. Tirion, Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77, 1905–1908 (1996)

    Article  Google Scholar 

  26. A.R. Atilgan, S.R. Durell, R.L. Jernigan, M.C. Demirel, O. Keskin, I. Bahar, Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001)

    Article  Google Scholar 

  27. I. Bahar, T.R. Lezon, L.-W. Yang, E. Eyal, Global dynamics of proteins: bridging between structure and function. Annu. Rev. Biophys. 39, 23–42 (2010)

    Article  Google Scholar 

  28. M. Sotomayor, K. Schulten, Single-molecule experiments in vitro and in silico. Science 316, 1144–1148 (2007)

    Article  Google Scholar 

  29. Y. Miller, B. Ma, R. Nussinov, Polymorphism in Alzheimer Aβ amyloid organization reflects conformational selection in a rugged energy landscape. Chem. Rev. 110, 4820–4838 (2010)

    Article  Google Scholar 

  30. I.M. Ilie, A. Caflisch, Simulation studies of amyloidogenic polypeptides and their aggregates. Chem. Rev. 119, 6956–6993 (2019)

    Article  Google Scholar 

  31. D. Huang, A. Caflisch, Evolutionary conserved Tyr169 stabilizes the β2-α2 loop of the prion protein. J. Am. Chem. Soc. 137, 2948–2957 (2015)

    Article  Google Scholar 

  32. N.F. Dupuis, C. Wu, J.-E. Shea, M.T. Bowers, The amyloid formation mechanism in human IAPP: dimers have β-strand monomer-monomer interfaces. J. Am. Chem. Soc. 133, 7240–7243 (2011)

    Article  Google Scholar 

  33. S.-H. Chong, S. Ham, Impact of chemical heterogeneity on protein self-assembly in water. Proc. Natl. Acad. Sci. U.S.A. 109, 7636–7641 (2012)

    Article  Google Scholar 

  34. N.F. Dupuis, C. Wu, J.-E. Shea, M.T. Bowers, Human islet amyloid polypeptide monomers form ordered β-hairpins: a possible direct amyloidogenic precursor. J. Am. Chem. Soc. 131, 18283–18292 (2009)

    Article  Google Scholar 

  35. C. Wu, J.-E. Shea, Structural similarities and differences between amyloidogenic and non-amyloidogenic islet amyloid polypeptide (IAPP) sequences and implications for the dual physiological and pathological activities of these peptides. PLoS Comput. Biol. 9, e1003211 (2013)

    Article  Google Scholar 

  36. A.S. Reddy, L. Wang, S. Singh, Y.L. Ling, L. Buchanan, M.T. Zanni et al., Stable and metastable states of human amylin in solution. Biophys. J. 99, 2208–2216 (2010)

    Article  Google Scholar 

  37. Z.A. Levine, L. Larini, N.E. LaPointe, S.C. Feinstein, J.-E. Shea, Regulation and aggregation of intrinsically disordered peptides. Proc. Natl. Acad. Sci. U.S.A. 112, 2758–2763 (2015)

    Article  Google Scholar 

  38. S. Chakraborty, P. Das, Emergence of alternative structures in amyloid beta 1–42 monomeric landscape by N-terminal hexapeptide amyloid inhibitors. Sci. Rep. 7, 9941 (2017)

    Article  Google Scholar 

  39. B. Choi, N.H. Kim, G.Y. Jin, Y.S. Kim, Y.H. Kim, K. Eom, Sequence-dependent aggregation-prone conformations of islet amyloid polypeptide. Phys. Chem. Chem. Phys. 23, 22532–22542 (2021)

    Article  Google Scholar 

  40. M.S. Li, N.T. Co, G. Reddy, C.-K. Hu, J.E. Straub, D. Thirumalai, Factors governing fibrillogenesis of polypeptide chains revealed by lattice models. Phys. Rev. Lett. 105, 218101 (2010)

    Article  Google Scholar 

  41. S. Chatterjee, A. Salimi, J.Y. Lee, Unraveling the histidine tautomerism effect on the initial stages of prion misfolding: new insights from a computational perspective. ACS Chem. Neurosci. 12, 3203–3213 (2021)

    Article  Google Scholar 

  42. X. Li, Z. Yang, Y. Chen, S. Zhang, G. Wei, L. Zhang, Dissecting the molecular mechanisms of the co-aggregation of Aβ40 and Aβ42 peptides: a REMD simulation study. J. Phys. Chem. B. 127, 4050–4060 (2023)

    Article  Google Scholar 

  43. Y. Luo, B. Ma, R. Nussinov, G. Wei, Structural insight into tau protein’s paradox of intrinsically disordered behavior, self-acetylation activity, and aggregation. J. Phys. Chem. Lett. 5, 3026–3031 (2014)

    Article  Google Scholar 

  44. T.P. Knowles, A.W. Fitzpatrick, S. Meehan, H.R. Mott, M. Vendruscolo, C.M. Dobson et al., Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007)

    Article  Google Scholar 

  45. Z.P. Xu, R. Paparcone, M.J. Buehler, Alzheimer’s Aβ(1–40) amyloid fibrils feature size-dependent mechanical properties. Biophys. J. 98, 2053–2062 (2010)

    Article  Google Scholar 

  46. G. Yoon, J. Kwak, J.I. Kim, S. Na, K. Eom, Mechanical characterization of amyloid fibrils using coarse-grained normal mode analysis. Adv. Funct. Mater. 21, 3454–3463 (2011)

    Article  Google Scholar 

  47. G. Yoon, Y.K. Kim, K. Eom, S. Na, Relationship between disease-specific structures of amyloid fibrils and their mechanical properties. Appl. Phys. Lett. 102, 011914 (2013)

    Article  Google Scholar 

  48. J. Dong, C.E. Castro, M.C. Boyce, M.J. Lang, S. Lindquist, Optical trapping with high forces reveals unexpected behaviors of prion fibrils. Nat. Struct. Mol. Biol. 17, 1422–1430 (2010)

    Article  Google Scholar 

  49. J.F. Smith, T.P. Knowles, C.M. Dobson, C.E. MacPhee, M.E. Welland, Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. U.S.A. 103, 15806–15811 (2006)

    Article  Google Scholar 

  50. S. Xiao, S. Xiao, F. Grater, Dissecting the structural determinants for the difference in mechanical stability of silk and amyloid beta-sheet stacks. Phys. Chem. Chem. Phys. 15, 8765–8771 (2013)

    Article  Google Scholar 

  51. B. Choi, G. Yoon, S.W. Lee, K. Eom, Mechanical deformation mechanisms and properties of amyloid fibrils. Phys. Chem. Chem. Phys. 17, 1379–1389 (2015)

    Article  Google Scholar 

  52. B. Choi, T. Kim, E.S. Ahn, S.W. Lee, K. Eom, Mechanical deformation mechanisms and properties of prion fibrils probed by atomistic simulations. Nanoscale Res. Lett. 12, 228 (2017)

    Article  Google Scholar 

  53. G. Grasso, M. Rebella, U. Morbiducci, J.A. Tuszynski, A. Danani, M.A. Deriu, The role of structural polymorphism in driving the mechanical performance of the Alzheimer’s beta amyloid fibrils. Front. Bioeng. Biotechnol. 7, 83 (2019)

    Article  Google Scholar 

  54. T.J. Paul, Z. Hoffmann, C. Wang, M. Shanmugasundaram, J. DeJoannis, A. Shekhtman et al., Structural and mechanical properties of amyloid beta fibrils: a combined experimental and theoretical approach. J. Phys. Chem. Lett. 7, 2758–2764 (2016)

    Article  Google Scholar 

  55. G. Lee, W. Lee, S. Baik, Y.H. Kim, K. Eom, T. Kwon, Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils. Nanotechnology 29, 295701 (2018)

    Article  Google Scholar 

  56. M. Lee, J.I. Kim, S. Na, K. Eom, Metal ions affect the formation and stability of amyloid β aggregates at multiple length scales. Phys. Chem. Chem. Phys. 20, 8951–8961 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilho Eom.

Ethics declarations

Conflict of interest

The author declares that there is no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, K. Molecular dynamics simulation-based understanding of the structure and property of amyloid proteins at multiple length scales. JMST Adv. 5, 27–36 (2023). https://doi.org/10.1007/s42791-023-00050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-023-00050-0

Keywords

Navigation