Skip to main content
Log in

Unveiling the impact of selected essential oils on MRSA strain ATCC 33591: antibacterial efficiency, biofilm disruption, and staphyloxanthin inhibition

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This work aimed to evaluate the effects of 4 selected essential oils on planktonic cells and microbial biofilms of the Staphylococcus aureus strain (MRSA ATCC 33591). The antibacterial activities of the four essential oils Geranium (Pelargonium graveolens), PgEO, Tea Tree (Melaleuca alternifolia) MaEO, Lemon peel (Citrus limon) ClEO and Peppermint (Mentha piperita) MpEO had MICs ranging from 1.56 to 12.5 µl/ml. The evaluation of the antibiofilm activities of the 4 EOs revealed that they had antiadhesive activities against S. aureus MRSA biofilms; the activity reached 60% (the EO of MpEO peppermint at a concentration of 3.12 µl/ml), and the eradication activity was 80% (the EO of PgEO and MpEO at 3.12 µl/ml). The antibiofilm activity of S. aureus has been explained by the binding of several essential oil bioactive molecules to the SarA protein, the main target protein involved in biofilm formation. The synthesis of the virulence factor staphyloxanthin by S. aureus MRSA ATCC 33591 was significantly inhibited in the presence of PgEO at a concentration of MIC/2. This inhibition was explained by the binding of the main PgEO molecules (β-citronellol and geraniol) to the CrTM protein involved in the staphyloxanthin synthesis pathway. There is evidence that these essential oils could be used as potential anti-virulents to control Staphylococcus biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article.

Refrences

  1. Williams-Nguyen J, Sallach JB, Bartelt-Hunt S et al (2016) Antibiotics and Antibiotic Resistance in Agroecosystems: state of the Science. J Environ Qual 45:394–406. https://doi.org/10.2134/jeq2015.07.0336

    Article  CAS  PubMed  Google Scholar 

  2. Salam MA, Al-Amin MY, Salam MT et al (2023) Antimicrobial Resistance: a growing serious threat for Global Public Health. Healthc (Basel) 11(1946). https://doi.org/10.3390/healthcare11131946

  3. Neville N, Jia Z (2019) Approaches to the structure-based design of Antivirulence drugs: therapeutics for the post-antibiotic era. https://doi.org/10.3390/molecules24030378. Molecules

  4. Murugaiyan J, Kumar PA, Rao GS et al (2022) Progress in alternative strategies to Combat Antimicrobial Resistance: focus on antibiotics. Antibiot (Basel) 11:200. https://doi.org/10.3390/antibiotics11020200

    Article  CAS  Google Scholar 

  5. Buroni S, Chiarelli LR (2020) Antivirulence compounds: a future direction to overcome antibiotic resistance? Future Microbiol 15:299–301. https://doi.org/10.2217/fmb-2019-0294

    Article  CAS  PubMed  Google Scholar 

  6. Ma R, K G MM (2021) Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian J Microbiology: [publication Brazilian Soc Microbiology] 52. https://doi.org/10.1007/s42770-021-00624-x

  7. Singh A, Amod A, Pandey P et al (2022) Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomedical Mater (Bristol England) 17. https://doi.org/10.1088/1748-605X/ac50f6

  8. Nikolic P, Mudgil P (2023) The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in Antibiotic Resistance. Microorganisms 11:259. https://doi.org/10.3390/microorganisms11020259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    Article  CAS  PubMed  Google Scholar 

  10. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001

    Article  CAS  PubMed  Google Scholar 

  11. Beenken KE, Blevins JS, Smeltzer MS (2003) Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 71:4206–4211. https://doi.org/10.1128/IAI.71.7.4206-4211.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Wang H, Zhou H et al (2020) Protective effect of the Golden Staphyloxanthin Biosynthesis Pathway on Staphylococcus aureus under Cold Atmospheric plasma treatment. Appl Environ Microbiol 86:e01998–e01919. https://doi.org/10.1128/AEM.01998-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xue L, Chen YY, Yan Z et al (2019) Staphyloxanthin: a potential target for antivirulence therapy. Infect Drug Resist 12:2151–2160. https://doi.org/10.2147/IDR.S193649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martínez A, Stashenko EE, Sáez RT et al (2023) Effect of essential oil from Lippia origanoides on the Transcriptional expression of genes related to Quorum Sensing, Biofilm formation, and virulence of Escherichia coli and Staphylococcus aureus. Antibiot (Basel) 12:845. https://doi.org/10.3390/antibiotics12050845

    Article  CAS  Google Scholar 

  15. Boukhris M, Bouaziz M, Feki I et al (2012) Hypoglycemic and antioxidant effects of leaf essential oil of Pelargonium graveolens L’Hér. In alloxan induced diabetic rats. Lipids Health Dis 11:81. https://doi.org/10.1186/1476-511X-11-81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bauer J, Siala W, Tulkens PM, Van Bambeke F (2013) A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob Agents Chemother 57:2726–2737. https://doi.org/10.1128/AAC.00181-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. CLSI Clinical and Laboratory Standards Institute (CLSI) (2020) Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute. https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf. Accessed 22 Apr 2024

  18. Jardak M, Mnif S, Ben Ayed R et al (2021) Chemical composition, antibiofilm activities of Tunisian spices essential oils and combinatorial effect against Staphylococcus epidermidis biofilm. LWT 140:110691. https://doi.org/10.1016/j.lwt.2020.110691

    Article  CAS  Google Scholar 

  19. Abdelli F, Jardak M, Elloumi J et al (2019) Antibacterial, anti-adherent and cytotoxic activities of surfactin(s) from a lipolytic strain Bacillus safensis F4. Biodegradation 30:287–300. https://doi.org/10.1007/s10532-018-09865-4

    Article  CAS  PubMed  Google Scholar 

  20. Kavanaugh NL, Ribbeck K (2012) Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 78:4057–4061. https://doi.org/10.1128/AEM.07499-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Selvaraj A, Valliammai A, Muthuramalingam P et al (2020) Carvacrol targets SarA and CrtM of Methicillin-Resistant Staphylococcus aureus to Mitigate Biofilm formation and Staphyloxanthin Synthesis: an in Vitro and in vivo Approach. ACS Omega 5:31100–31114. https://doi.org/10.1021/acsomega.0c04252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ryt PGJD K (2017) Dehydrosqualene Desaturase as a Novel Target for Anti-virulence Therapy against Staphylococcus aureus. https://doi.org/10.1128/mBio.01224-17. mBio 8:

  23. Senthil Kumar KJ, Gokila Vani M, Wang C-S et al (2020) Geranium and Lemon essential oils and their active compounds Downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants (Basel) 9:770. https://doi.org/10.3390/plants9060770

    Article  CAS  PubMed  Google Scholar 

  24. Corona-Gómez L, Hernández-Andrade L, Mendoza-Elvira S et al (2022) In vitro antimicrobial effect of essential tea tree oil(Melaleuca alternifolia), thymol, and carvacrol on microorganisms isolated from cases of bovine clinical mastitis. Int J Vet Sci Med 10:72–79. https://doi.org/10.1080/23144599.2022.2123082

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ben Hsouna A, Ben Halima N, Smaoui S, Hamdi N (2017) Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis 16:146. https://doi.org/10.1186/s12944-017-0487-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marwa C, Fikribenbrahim K, OU-yahia D, Farah A (2017) African peppermint (Mentha Piperita) from Morocco: Chemical composition and antimicrobial properties of essential oil. J Adv Pharm Tech Res 8. https://doi.org/10.4103/japtr.JAPTR_11_17

  27. Ben ElHadj Ali I, Tajini F, Boulila A et al (2020) Bioactive compounds from Tunisian Pelargonium graveolens (L’Hér.) Essential oils and extracts: α-amylase and acethylcholinesterase inhibitory and antioxidant, antibacterial and phytotoxic activities. Ind Crops Prod 158:112951. https://doi.org/10.1016/j.indcrop.2020.112951

    Article  CAS  Google Scholar 

  28. Cáceres M, Hidalgo W, Stashenko E et al (2020) Essential Oils of Aromatic Plants with Antibacterial, Anti-biofilm and Anti-quorum sensing activities against pathogenic Bacteria. Antibiot (Basel) 9:147. https://doi.org/10.3390/antibiotics9040147

    Article  CAS  Google Scholar 

  29. Jardak M, Elloumi-Mseddi J, Aifa S, Mnif S (2017) Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis 16:190. https://doi.org/10.1186/s12944-017-0580-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Balamurugan P, Praveen Krishna V, Bharath D et al (2017) Staphylococcus aureus Quorum Regulator SarA targeted compound, 2-[(Methylamino)methyl]phenol inhibits Biofilm and Down-regulates virulence genes. Front Microbiol 8:1290. https://doi.org/10.3389/fmicb.2017.01290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu C-I, Liu GY, Song Y et al (2008) A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus Virulence. Science 319:1391–1394. https://doi.org/10.1126/science.1153018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zapotoczna M, McCarthy H, Rudkin JK et al (2015) An essential role for Coagulase in Staphylococcus aureus Biofilm Development reveals new therapeutic possibilities for device-related infections. J Infect Dis 212:1883–1893. https://doi.org/10.1093/infdis/jiv319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia (LR15CBS07 budget).

Funding

This study was funded by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Mnif.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All the authors declare that they have no conflicts of interest related to this publication.

Additional information

Responsible Editor: Ilana Camargo.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elghali, F., Ibrahim, I., Guesmi, M. et al. Unveiling the impact of selected essential oils on MRSA strain ATCC 33591: antibacterial efficiency, biofilm disruption, and staphyloxanthin inhibition. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01374-2

Keywords

Navigation